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CSRF

m The malicious request is not made the user,
but the server does not know this,
thinks that it is made by the user,
and happily services the request.



Two Conditions
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Trigger Request

m Attacker sends fishing email
m Attacker posts the request to other sites

m Using scripts

= Many automation and programming tricks



Good User Behavior

m Logoff immediately after using a Web application
m Do NOT allow your browser to save username/passwords
m Do NOT allow site to remember your login

m Do NOT user the same browser to access sensitive
applications and surf the Internet freely

m Use No-Script like plugins to prevent scripts from submitting
POST requests automatically

from OWASP




Can a Web site count on
good user behaviors?
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Open Web
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Open Web - CSRF
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Open Web — No CSRF
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Browser Features

m HTTP Headers
= Origin
m Referer



Browser Features

m HTTP Headers
= Origin
m Referer

m Content Security Policy (CSP)



The Referer Header

Referrer Policy m-wo Global 64.29%

Allow control of HTTP referrers via the referrer meta tag.
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The Origin Header |I

Cross-Origin Resource Sharing & - rec Global 83.47% + 8.55% = 92.03%
Method of performing XMLHttpRequests across domains
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CSP

Content Security Policy 1.0 & - Global 76.33% + 8.32% = 84.64%

Mitigate cross-site scripting attacks by whitelisting allowed sources
of script, style, and other resources.
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==
Using the Origin Header

m An API for a service handler to call

void verifyOriginHeader(HTTPRequest request);

m Implementation
m Whitelist accepting domains
m As a SaaS provider, allow customers to set the whitelist

via configuration file or database query
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Pareto Empirical Principle: 80 - 20
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Server Side — Central Question

Server needs to know if a request comes from itself
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Global Bank
https://banking.gb.com

email
public web site

CSREF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine



Solution: Cryptographic Secret

m Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

https://banking.gb.com/payment?
amount=9999&from=c&to=s&csrf=0123456789abcdef01234567

89abcdef
Global Bank
https://banking.gb.com

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine




Solution: Cryptographic Secret

m Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

<form method=“"POST” action="*"...&csrf=xxx>...</form>

<input type="hidden" name="csrf" value=""xxx">

Global Bank
https://banking.gb.com

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine




Solution: Cryptographic Secret

m Request handler validates CSRF tokens

void verifyCSRFToken(HTTPRequest request);
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CSRF Token Management

m Cryptographically strong

m 256 bits, java.security.SecureRandom

m Rotation: creation and expiration
m Create a new token for each new request
m FIFO queue, Least recently used, ...

m Internal APIs hidden from Web application
m Only used by CSRF APIs



==
CSRF APIs

m Tag a request with a CSRF token
m String stampURL(String url);
m FormGenerator stampURL(FormGenerator form);
m String getToken();

m Check the token
m void verifyCSRFToken(HTTPRequest request);
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POST vs. GET

m GET
m cached, logged, etc.
m more exposure than a form hidden field
m RFC 2616 recommends as a safe method
m related to token secret management

m POST



Server vs. Client Store

m Server stores CSRF tokens in user’s session

m Client stores CSRF tokens in cookie

aka. double submit cookies



Error Handling

m Return error page
m Return a page educating user about CSRF

m Internal logging



CSRF Boundary

m Not want to check requests for public landing pages
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CSRF Boundary

m Cut yourself out of the Web
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Draw a CSRF Boundary in URLs

The most difficult task in protecting a legacy web site
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Draw a CSRF Boundary in URLs

m LLesson

Distinguish public resources and non-public resources before
screwed up



Thank You!



