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CSRF 

n  The malicious request is not made the user, 

but the server does not know this,  

thinks that it is made by the user, 

and happily services the request. 
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Two Conditions 
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Trigger Request 

n  Attacker sends fishing email 

n  Attacker posts the request to other sites 

n  Using scripts 
n  Many automation and programming tricks 
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Good User Behavior 

n  Logoff immediately after using a Web application 

n  Do NOT allow your browser to save username/passwords 

n  Do NOT allow site to remember your login 

n  Do NOT user the same browser to access sensitive 
applications and surf the Internet freely 

n  Use No-Script like plugins to prevent scripts from submitting 
POST requests automatically 

from OWASP 
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Can a Web site count on 
 good user behaviors? 
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Why Can CSRF Happen 
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Open Web 
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Open Web 

Amazing 
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Open Web - CSRF 
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Open Web – No CSRF 
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Client Side Features 

n  Useful headers sent by browser: Origin, Referer 

n  CSP? 
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Browser Features 

n  HTTP Headers 
n  Origin 

n  Referer 

n  Content Security Policy (CSP) 
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The Referer Header 
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The Origin Header 
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CSP 
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Using the Origin Header 

n  An API for a service handler to call 

void verifyOriginHeader(HTTPRequest request); 

 

n  Implementation 
n  Whitelist accepting domains 

n  As a SaaS provider, allow customers to set the whitelist 

via configuration file or database query 



+
Pareto Empirical Principle: 80 - 20 
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Server Side – Central Question 

Server needs to know if a request comes from itself 

https://banking.gb.com/payment?amount=4&from=c&to=s 
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Solution: Cryptographic Secret 

n  Use a cryptographic secret to identify its own URLs 
CSRF Token/Nonce 

https://banking.gb.com/payment?
amount=9999&from=c&to=s&csrf=0123456789abcdef01234567
89abcdef 
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Solution: Cryptographic Secret 

n  Use a cryptographic secret to identify its own URLs 
CSRF Token/Nonce 

<form method=“POST” action=“…&csrf=xxx>…</form> 

<input type="hidden" name="csrf" value=”xxx"> 
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Solution: Cryptographic Secret 

n  Request handler validates CSRF tokens 

void verifyCSRFToken(HTTPRequest request); 
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CSRF Token Management 

n  Cryptographically strong 
n  256 bits, java.security.SecureRandom 

n  Rotation: creation and expiration 
n  Create a new token for each new request 

n  FIFO queue, Least recently used, … 

 

n  Internal APIs hidden from Web application 
n  Only used by CSRF APIs 
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CSRF APIs 

n  Tag a request with a CSRF token 
n  String stampURL(String url); 

n  FormGenerator stampURL(FormGenerator form); 

n  String getToken(); 

n  Check the token 
n  void verifyCSRFToken(HTTPRequest request); 
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POST vs. GET 

n  GET 
n  cached, logged, etc. 

n  more exposure than a form hidden field 

n  RFC 2616 recommends as a safe method 

n  related to token secret management 

n  POST 



+
Server vs. Client Store 

n  Server stores CSRF tokens in user’s session 

n  Client stores CSRF tokens in cookie 
aka. double submit cookies 
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Error Handling 

n  Return error page 

n  Return a page educating user about CSRF 

n  Internal logging 
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CSRF Boundary 

n  Not want to check requests for public landing pages 
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CSRF Boundary 

n  Cut yourself out of the Web 
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Draw a CSRF Boundary in URLs 

The most difficult task in protecting a legacy web site 
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Draw a CSRF Boundary in URLs 

n  Lesson 

Distinguish public resources and non-public resources before 
screwed up 
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Thank You! 


