
+

Fixing CSRF Effectively

Lu Zhao
lzhao@netsuite.com

+
CSRF – Cross Site Request Forgery

+
CSRF – Cross Site Request Forgery

+
CSRF – Cross Site Request Forgery

+
CSRF

n  The malicious request is not made the user,

but the server does not know this,

thinks that it is made by the user,

and happily services the request.

+
Two Conditions

+
Trigger Request

n  Attacker sends fishing email

n  Attacker posts the request to other sites

n  Using scripts
n  Many automation and programming tricks

+
Good User Behavior

n  Logoff immediately after using a Web application

n  Do NOT allow your browser to save username/passwords

n  Do NOT allow site to remember your login

n  Do NOT user the same browser to access sensitive
applications and surf the Internet freely

n  Use No-Script like plugins to prevent scripts from submitting
POST requests automatically

from OWASP

+

Can a Web site count on
 good user behaviors?

+
Why Can CSRF Happen

+
Open Web

+
Open Web

Amazing

+
Open Web - CSRF

+
Open Web – No CSRF

+
Client Side Features

n  Useful headers sent by browser: Origin, Referer

n  CSP?

+
Browser Features

n  HTTP Headers
n  Origin

n  Referer

+
Browser Features

n  HTTP Headers
n  Origin

n  Referer

n  Content Security Policy (CSP)

+
The Referer Header

+
The Origin Header

+
CSP

+
Using the Origin Header

n  An API for a service handler to call

void verifyOriginHeader(HTTPRequest request);

n  Implementation
n  Whitelist accepting domains

n  As a SaaS provider, allow customers to set the whitelist

via configuration file or database query

+
Pareto Empirical Principle: 80 - 20

+
Server Side – Central Question

Server needs to know if a request comes from itself

https://banking.gb.com/payment?amount=4&from=c&to=s

+
Solution: Cryptographic Secret

n  Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

https://banking.gb.com/payment?
amount=9999&from=c&to=s&csrf=0123456789abcdef01234567
89abcdef

+
Solution: Cryptographic Secret

n  Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

<form method=“POST” action=“…&csrf=xxx>…</form>

<input type="hidden" name="csrf" value=”xxx">

+
Solution: Cryptographic Secret

n  Request handler validates CSRF tokens

void verifyCSRFToken(HTTPRequest request);

+
CSRF Token Management

n  Cryptographically strong
n  256 bits, java.security.SecureRandom

n  Rotation: creation and expiration
n  Create a new token for each new request

n  FIFO queue, Least recently used, …

n  Internal APIs hidden from Web application
n  Only used by CSRF APIs

+
CSRF APIs

n  Tag a request with a CSRF token
n  String stampURL(String url);

n  FormGenerator stampURL(FormGenerator form);

n  String getToken();

n  Check the token
n  void verifyCSRFToken(HTTPRequest request);

+
POST vs. GET

n  GET
n  cached, logged, etc.

n  more exposure than a form hidden field

n  RFC 2616 recommends as a safe method

n  related to token secret management

n  POST

+
Server vs. Client Store

n  Server stores CSRF tokens in user’s session

n  Client stores CSRF tokens in cookie
aka. double submit cookies

+
Error Handling

n  Return error page

n  Return a page educating user about CSRF

n  Internal logging

+
CSRF Boundary

n  Not want to check requests for public landing pages

+
CSRF Boundary

n  Cut yourself out of the Web

+
Draw a CSRF Boundary in URLs

The most difficult task in protecting a legacy web site

+
Draw a CSRF Boundary in URLs

n  Lesson

Distinguish public resources and non-public resources before
screwed up

+

Thank You!

