Fixing CSRF Effectively

Lu Zhao
lzhao@netsuite.com

+
CSRF — Cross Site Request Forgery

Global Bank
https://banking.gb.com

email
public web site

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

+
CSRF — Cross Site Request Forgery

Global Bank
https://banking.gb.com

\ public web site

\\ CSRF Attacker

https:/lbénking.gb.com/payment?amou
nt=100&from=yours&to=mine

+
CSRF — Cross Site Request Forgery

Global Bank
https://banking.gb.com

email

CSRF Attacker

https:/lbanking.gb.com/payment?an‘ou
nt=100&from=yours&to=mine

CSRF

m The malicious request is not made the user,
but the server does not know this,
thinks that it is made by the user,
and happily services the request.

Two Conditions

Global Bank
https://banking.gb.com

2. Crafted request
email triggered

public web site

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Trigger Request

m Attacker sends fishing email
m Attacker posts the request to other sites

m Using scripts

= Many automation and programming tricks

Good User Behavior

m Logoff immediately after using a Web application
m Do NOT allow your browser to save username/passwords
m Do NOT allow site to remember your login

m Do NOT user the same browser to access sensitive
applications and surf the Internet freely

m Use No-Script like plugins to prevent scripts from submitting
POST requests automatically

from OWASP

Can a Web site count on
good user behaviors?

+
Why Can CSRF Happen

Glebal Ban
https{/banking.gb.com

+
Open Web

Global Bank

https://banking.gb.com

<img src="https://images.cool.CC

images.cool.com

==

o
=
=]

Amaz

Open Web

+
Open Web - CSRF

Global Bank
https://banking.gb.com

email
public web site

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Open Web — No CSRF

Global Bank
https://banking.gb.com

email

public web site

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Browser Features

m HTTP Headers
= Origin
m Referer

Browser Features

m HTTP Headers
= Origin
m Referer

m Content Security Policy (CSP)

The Referer Header

Referrer Policy m-wo Global 64.29%

Allow control of HTTP referrers via the referrer meta tag.

(@ =l Usage relative Show all

* * H *
Edge Firefox Chrome Safari Opera iOS Safari Opera Mini épg&ggdr Cr;‘rr%?gigor

41
43

8 31 8.4

IE

==
The Origin Header |I

Cross-Origin Resource Sharing & - rec Global 83.47% + 8.55% = 92.03%
Method of performing XMLHttpRequests across domains

(@G Usage relative Show all

IE Edge Firefox Chrome Safari Opera i0S Safari Opera Mini * Android * Chrome for

Browser Android

31 41
43 . 43

3

8 3 B 44

1 8.4

CSP

Content Security Policy 1.0 & - Global 76.33% + 8.32% = 84.64%

Mitigate cross-site scripting attacks by whitelisting allowed sources
of script, style, and other resources.

(@VgS 0TS0 Usage relative Show all

IE Edge Firefox Chrome Safari Opera i0S Safari OperaMini Spgv(/cs)g * Cgrﬁé?gigor

31 4.1
43 443

8 3 8.4

1
o] = | 9 |

==
Using the Origin Header

m An API for a service handler to call

void verifyOriginHeader(HTTPRequest request);

m Implementation
m Whitelist accepting domains
m As a SaaS provider, allow customers to set the whitelist

via configuration file or database query

+
Pareto Empirical Principle: 80 - 20

IEifion

Server Side — Central Question

Server needs to know if a request comes from itself

https://banking.gb.com/payment?amount=4&from=c&to=s

Global Bank
https://banking.gb.com

email
public web site

CSREF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Solution: Cryptographic Secret

m Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

https://banking.gb.com/payment?
amount=9999&from=c&to=s&csrf=0123456789abcdef01234567

89abcdef
Global Bank
https://banking.gb.com

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Solution: Cryptographic Secret

m Use a cryptographic secret to identify its own URLs
CSRF Token/Nonce

<form method=“"POST” action="*"...&csrf=xxx>...</form>

<input type="hidden" name="csrf" value=""xxx">

Global Bank
https://banking.gb.com

CSRF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

Solution: Cryptographic Secret

m Request handler validates CSRF tokens

void verifyCSRFToken(HTTPRequest request);

Global Bank
https://banking.gb.com

CSREF Attacker

https://banking.gb.com/payment?amou
nt=100&from=yours&to=mine

CSRF Token Management

m Cryptographically strong

m 256 bits, java.security.SecureRandom

m Rotation: creation and expiration
m Create a new token for each new request
m FIFO queue, Least recently used, ...

m Internal APIs hidden from Web application
m Only used by CSRF APIs

==
CSRF APIs

m Tag a request with a CSRF token
m String stampURL(String url);
m FormGenerator stampURL(FormGenerator form);
m String getToken();

m Check the token
m void verifyCSRFToken(HTTPRequest request);

+
POST vs. GET

m GET
m cached, logged, etc.
m more exposure than a form hidden field
m RFC 2616 recommends as a safe method
m related to token secret management

m POST

Server vs. Client Store

m Server stores CSRF tokens in user’s session

m Client stores CSRF tokens in cookie

aka. double submit cookies

Error Handling

m Return error page
m Return a page educating user about CSRF

m Internal logging

CSRF Boundary

m Not want to check requests for public landing pages

Global Bank
https://banking.gb.com

<a
href="https://banking.gb.com/promote"
>Amazing Bank

images.cool.com

CSRF Boundary

m Cut yourself out of the Web

Global Bank

<a
href="https://banking.gb.com/promotion
">Amazing Bank

images.cool.com

Draw a CSRF Boundary in URLs

The most difficult task in protecting a legacy web site

Global Bank
https://banking.gb.com

href="https://banking.gb.com/p
>Amazing Bank

CSRF Attacker images.cool.com

Draw a CSRF Boundary in URLs

m LLesson

Distinguish public resources and non-public resources before
screwed up

Thank You!

