# Social Network Analysis as an Internet Security Tool

### Abstract

Security devices (firewalls, IDS, IPS) produces a huge amount of data by posting each security incident/event into a Syslog database. This (big) data enables the system administrators to identify the source of the largest attacks, and the most frequently victimized/targeted server.

However, due to massive number of records generated by Syslogs, a quicker and more timely analysis is needed. **Social Network analysis** is presented here as an optimal way to quickly analyze and create actionable insights from this huge amount of data – by converting (big) data into graphics format.

Compare the typical incident entry in the syslog database:

| 2853776   | 2            | 2013-04-1 | 7 10:56:36. | 6 <mark>53</mark> | 202.91.16       | 51.254     | 0      | 23             | 6        | fa-0-1-7206a-      |
|-----------|--------------|-----------|-------------|-------------------|-----------------|------------|--------|----------------|----------|--------------------|
| dagupan   | SEC-6-IPAC   | CESSLOGP  | 12071018:   | UTC:              | list 150 denied | tcp 114.12 | 2.33.2 | 16(2963) (Ethe | met5/3 ( | )025.9e5d.d0f7) -> |
| 202.91.17 | 1.77(445), 1 | packet    |             | 114.1             | L22.33.16       | 202.91.17  | 71.77  | 00259e         | 5dd0f7   |                    |

Where the data of interest are shaded:

- in Red (Date and time)
- in Green (Source of the Incident)
- in LightBlue (Destination of the incident)

In a typical hour, thousands of such entries would be appended to the database. A representative screen shot of such incidents would look like this:

| A       | В        | С        | D              | E           | F              | G        |              | н        | 1                   |               | J           |                | K           | L                   | M               | N            |
|---------|----------|----------|----------------|-------------|----------------|----------|--------------|----------|---------------------|---------------|-------------|----------------|-------------|---------------------|-----------------|--------------|
| MsgID   | EngineID | DateTime | DeviceIP       | Acknowledge | syslogFacility | Severity | Hostname     |          | Message Type        | Message       |             |                | SyslogTag   | SourceIP            | DestinationIP   | MacinMessage |
| 2853777 | 2        | 56:36.7  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGRL | 12071019: L   | ЛС: acce    | ess-list loggi | ng rate-lim | ited or missed 459  | packets         | 0015175ac90c |
| 2853776 | 2        | 56:36.7  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071018: 0   | JTC: list : | 50 denied t    | cp 114.122  | 114.122.33.16       | 202.91.171.77   | 00259e5dd0f7 |
| 2853775 | 2        | 56:34.5  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071017: 0   | JTC: list : | 50 denied t    | cp 202.152  | 202.152.199.151     | 202.91.166.24   | 002590312c02 |
| 2853774 | 2        | 56:34.5  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071016: L   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 122.52.49.46    | 0015175ac90c |
| 2853773 | 2        | 56:32.2  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071014: L   | JTC: list : | 50 denied t    | cp 114.39.  | 1114.39.138.198     | 202.91.172.94   | 002590312c02 |
| 2853772 | 2        | 56:32.2  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071015: U   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 122.52.49.46    | 0015175ac90c |
| 2853771 | 2        | 56:31.7  | 74.115.208.105 | 0           | 3              | 3        | 74.115.208.1 | 05       |                     | BITSTOP-2A    | 0044C Se    | curity: 529:   | NT AUTHO    | 192.169.55.45       |                 | 00259e5dd0f7 |
| 2853770 | 2        | 56:30.3  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071013: L   | JTC: list : | 50 denied t    | cp 85.94.1  | 685.94.160.140      | 202.91.175.120  | 00259e5dd0f7 |
| 2853769 | 2        | 56:29.2  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071012: U   | JTC: list : | 50 denied t    | cp 70.36.2  | 70.36.237.56        | 202.91.174.102  | 00259e5dd0f7 |
| 2853768 | 2        | 56:28.2  | 202.91.161.130 | 0           | 3              | 5        | www          |          |                     | Security: 538 | B: DAGUR    | AN.COM\IN      | AGESRV\$    | : User Logoff: User | Name: IMAGESRV  | 00259e5dd0f7 |
| 2853767 | 2        | 56:28.0  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071011: 0   | JTC: list : | 50 denied t    | cp 212.225  | 212.225.138.119     | 202.91.170.122  | 002590312c02 |
| 2853766 | 2        | 56:27.0  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071010: U   | JTC: list1  | /MUF-in der    | nied top 10 | 10.21.11.216        | 98.138.24.49    | 002590312c02 |
| 2853765 | 2        | 56:26.8  | 202.91.162.7   | 0           | 3              | 6        | 202.91.162.7 |          |                     | snmpd[1854    | : Conne     | tion from U    | JDP: [202.9 | 202.91.161.133      |                 | 00259e5dd0f7 |
| 2853764 | 2        | 56:26.7  | 74.115.208.105 | 0           | 3              | 3        | 74.115.208.1 | 05       |                     | BITSTOP-2A    | 0044C Se    | curity: 529:   | NT AUTHO    | 192.169.55.45       |                 | 00259e5dd0f7 |
| 2853763 | 2        | 56:26.7  | 74.115.208.105 | 0           | 3              | 3        | 74.115.208.1 | 05       |                     | BITSTOP-2A    | 0044C Se    | curity: 529:   | NT AUTHO    | 84.241.36.207       |                 | 00259e5dd0f7 |
| 2853762 | 2        | 56:25.9  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071009: 0   | JTC: list : | 50 denied t    | cp 116.236  | 116.236.205.250     | 202.91.166.74   | 00259e5dd0f7 |
| 2853761 | 2        | 56:24.9  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071008: 0   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 122.52.49.46    | 0015175ac90c |
| 2853760 | 2        | 56:23.9  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071007: U   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 95.211.138.143  | 0015175ac90c |
| 2853759 | 2        | 56:22.8  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071006: L   | JTC: list : | 55 denied u    | dp 202.91   | 202.91.161.143      | 199.165.76.11   | 0002b3ac026d |
| 2853758 | 2        | 56:21.3  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071005: U   | JTC: list : | 50 denied t    | cp 189.63.  | 189.63.8.193        | 202.91.160.21   | 002590312c02 |
| 2853757 | 2        | 56:20.1  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071004: L   | JTC: list   | /MUF-in der    | nied top 10 | . 10.21.14.170      | 31.13.76.8      | 002590312c02 |
| 2853756 | 2        | 56:19.1  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071003: U   | JTC: list : | 50 denied t    | cp 111.242  | 111.242.12.46       | 202.91.170.90   | 0015175ac90c |
| 2853755 | 2        | 56:17.8  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071002: L   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 121.54.58.220   | 0015175ac90c |
| 2853754 | 2        | 56:16.8  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071001: L   | JTC: list : | 55 denied u    | dp 202.91   | 202.91.161.143      | 133.100.9.2     | 0002b3ac026d |
| 2853753 | 2        | 56:16.7  | 74.115.208.105 | 0           | 3              | 3        | 74.115.208.1 | 05       |                     | BITSTOP-2A    | 0044C Se    | curity: 529:   | NT AUTHO    | 192.169.55.45       |                 | 00259e5dd0f7 |
| 2853752 | 2        | 56:15.7  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12071000: L   | JTC: list : | 50 denied t    | cp 184.106  | 184.106.114.220     | 202.91.172.85   | 00259e5dd0f7 |
| 2853751 | 2        | 56:14.7  | 202.91.161.254 | 0           | 23             | e        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12070999: U   | JTC: list1  | /MUF-in der    | nied top 10 | . 10.21.21.12       | 124.106.174.162 | 002590312c02 |
| 2853540 | 2        | 53:40.3  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12070861: U   | JTC: list : | 50 denied t    | cp 38.69.3  | 38.69.39.114        | 202.91.160.118  | 00259e5dd0f7 |
| 2853539 | 2        | 53:39.3  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12070860: L   | JTC: list : | 30 denied t    | cp 192.0.2  | . 192.0.2.43        | 124.83.60.172   | 0015175ac90c |
| 2853538 | 2        | 53:37.9  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12070859: U   | JTC: list : | 50 denied t    | cp 36.235.  | 136.235.180.127     | 202.91.162.36   | 002590312c02 |
| 2853537 | 2        | 53:36.6  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGP  | 12070858: 0   | JTC: list \ | /MUF-in der    | nied top 10 | . 10.21.21.12       | 63.150.131.10   | 002590312c02 |
| 2853536 | 2        | 53:36.6  | 202.91.161.254 | 0           | 23             | 6        | fa-0-1-7206a | -dagupan | SEC-6-IPACCESSLOGRL | 12070857: 0   | JTC: acce   | ess-list loggi | ng rate-lim | ited or missed 435  | packets         | 0024e844da8f |

Now compare the above Syslog list with its equivalent output in Gephi:



It is now easier for both Administrators and C-Level Executives to get a 'bird's eye' view of what is happening in their networks. The Red colored Circles represent NODES that are the **sources** of attacks, while the blue colored circles represent the target/**destination** of such attacks. The larger the size of the red circles means that there are more attacks coming out of these nodes. The thicker the lines/edges, the more traffic originates from the same source to same destination nodes.

## Four Quick and Easy Steps to Social Network Analysis

- Extract Syslog SQL database records and save as CSV file format
- Convert CSV into Gephi GEXF format by using **Table2NET**<sup>1</sup> http://tools.medialab.sciences-po.fr/table2net/
- Load the GEXF file into Gephi
- Configure Gelphi and Extract Graph as picture.

<sup>&</sup>lt;sup>1</sup> Table2NET was shared by Paul Alford in this Facebook Post: <u>https://www.facebook.com/groups/140630009439814/permalink/146327902203358/</u>

## KeyStep1: Extract Data

Log in to the SQL Server via SQL MMC or SQL Query and issue the command to extract a single day's worth of syslog data:

Select \* from syslog where [datetime]>=('4-20-2013') and [datetime]<('4-21-2013')

|    | HTD   | En min e TD | DeteTime   |              | TD             |              | Court a set a set 1 datas | Garant |
|----|-------|-------------|------------|--------------|----------------|--------------|---------------------------|--------|
|    | Magin | Engineid    | Datelime   |              | IP             | Acknowledged | Systogracility            | SASP   |
| 1  | 6106  | 2           | 2013-03-20 | 12:19:35.027 | 202.91.161.254 | 0            | 23                        | 6      |
| 2  | 6105  | 2           | 2013-03-20 | 12:19:33.963 | 202.91.161.254 | 0            | 23                        | 6      |
| 3  | 6104  | 2           | 2013-03-20 | 12:19:33.683 | 202.91.161.130 | 0            | 3                         | 5      |
| 4  | 6103  | 2           | 2013-03-20 | 12:19:33.683 | 202.91.161.130 | 0            | 3                         | 5      |
| 5  | 6102  | 2           | 2013-03-20 | 12:19:33.840 | 202.91.162.7   | 0            | 3                         | 6      |
| 6  | 6101  | 2           | 2013-03-20 | 12:19:33.700 | 202.91.161.130 | 0            | 3                         | 5      |
| 7  | 6100  | 2           | 2013-03-20 | 12:19:33.700 | 202.91.161.130 | 0            | 3                         | 5      |
| 8  | 6099  | 2           | 2013-03-20 | 12:19:33.700 | 202.91.161.130 | 0            | 3                         | 5      |
| 9  | 6098  | 2           | 2013-03-20 | 12:19:33.700 | 202.91.161.130 | 0            | 3                         | 5      |
| 10 | 6097  | 2           | 2013-03-20 | 12:19:33.700 | 202.91.161.130 | 0            | 3                         | 5      |
| 11 | 6096  | 2           | 2013-03-20 | 12:19:33.683 | 202.91.161.130 | 0            | 3                         | 5      |
| 12 | 6095  | 2           | 2013-03-20 | 12:19:33.667 | 202.91.161.130 | 0            | 3                         | 5      |
| 13 | 6094  | 2           | 2013-03-20 | 12:19:32.963 | 202.91.161.254 | 0            | 23                        | 6      |
| 14 | 6093  | 2           | 2013-03-20 | 12:19:31.950 | 202.91.161.254 | 0            | 23                        | 6      |
| 15 | 6092  | 2           | 2013-03-20 | 12:19:30.933 | 202.91.161.254 | 0            | 23                        | 6      |
| 16 | 6091  | 2           | 2013-03-20 | 12:19:29.917 | 202.91.161.254 | 0            | 23                        | 6      |
| 17 | 6090  | 2           | 2013-03-20 | 12:19:28.903 | 202.91.161.254 | 0            | 23                        | 6      |
| 18 | 6089  | 2           | 2013-03-20 | 12:19:27.917 | 202.91.161.254 | 0            | 23                        | 6      |
| 19 | 6088  | 2           | 2013-03-20 | 12:19:26.887 | 202.91.161.254 | 0            | 23                        | 6      |
| 20 | 6087  | 2           | 2013-03-20 | 12:19:26.793 | 202.91.161.139 | 0            | 3                         | 6      |
| 21 | 6086  | 2           | 2013-03-20 | 12:19:25.887 | 202.91.161.254 | 0            | 23                        | 6      |
| 22 | 6085  | 2           | 2013-03-20 | 12:19:24.887 | 202.91.161.254 | 0            | 23                        | 6      |
| 23 | 6084  | 2           | 2013-03-20 | 12:19:23.887 | 202.91.161.254 | 0            | 23                        | 6      |
| 24 | 6083  | 2           | 2013-03-20 | 12:19:23.653 | 202.91.161.130 | 0            | 3                         | 5      |

Right click on the output and select [Save AS] and name the file "Syslog-2013-4.csv"

## KeyStep2: Convert into Gephi Format

Using the CSV file extracted from Step1, I opened a browser and visited this website: <a href="http://tools.medialab.sciences-po.fr/table2net/">http://tools.medialab.sciences-po.fr/table2net/</a> to upload and convert the CSV file into gephi format.

| 🗋 tools.medialab.sciences-po.fr/ta | ble2net/                                                                          |
|------------------------------------|-----------------------------------------------------------------------------------|
|                                    | Table 2 Net                                                                       |
|                                    | Table 2 Net                                                                       |
|                                    | Load your CSV table                                                               |
|                                    | It has to be comma-separated and the first row must be dedicated to column names. |
|                                    | Choose File No file chosen                                                        |
|                                    | Note: you can drag and drop a file                                                |
|                                    |                                                                                   |
|                                    |                                                                                   |

Click on "Choose File" and upload the syslog2013-4.csv. Once the upload is finished, you will see a screen similar to this:

| Table 2                                                                                                                               | Net                       |                      |                         |                              |                        |                |          |                          |                         | 🕂 Médi                                                                                             | alab Tools |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------|------------------------------|------------------------|----------------|----------|--------------------------|-------------------------|----------------------------------------------------------------------------------------------------|------------|
| Table 2 Net       Extract a network from a table. Set a column for not and a column for edges. It deals with multiple items per cell. |                           |                      |                         |                              |                        |                |          |                          |                         |                                                                                                    |            |
| Loac<br>It has to be<br>Parsing                                                                                                       | <b>I YOU</b><br>e comma-s | r CSV<br>separated a | table first s and 65832 | cow must be dedic<br>2 rows. | cated to <b>column</b> | names.         |          |                          |                         |                                                                                                    | ×          |
| Row                                                                                                                                   | MsgID                     | EngineID             | DateTime                | DeviceIP                     | Acknowledge            | syslogFacility | Severity | Hostname                 | Message Type            | Message                                                                                            | SyslogTa:  |
| 1                                                                                                                                     | 2853777                   | 2                    | 56:36.7                 | 202.91.161.254               | 0                      | 23             | 6        | fa-0-1-7206a-<br>dagupan | SEC-6-<br>IPACCESSLOGRL | 12071019: UTC: access-<br>list logging rate-limited or<br>missed 459 packets                       |            |
| 2                                                                                                                                     | 2853776                   | 2                    | 56:36.7                 | 202.91.161.254               | 0                      | 23             | 6        | fa-0-1-7206a-<br>dagupan | SEC-6-<br>IPACCESSLOGP  | 12071018: UTC: list 150<br>denied tcp<br>114.122.33.16(2963)<br>(Ethernet5/3<br>0025.9e5d.d0f7) -> | -          |
| •                                                                                                                                     |                           |                      | 1                       |                              | III                    |                |          | ,                        |                         |                                                                                                    | 4          |

Scroll down this screen and select [Bipartite (Two Types of Nodes)] from the Type of Network dropdown.



Then select **SourceIP** for the First Type of nodes and then select **DestinationIP** as the Second Type of Nodes. The screen should be similar to this:

| SourceIP                                                                                                                                                |                                                                                    |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|
| Comma-separated ","                                                                                                                                     |                                                                                    |            |
| mple of nodes extracted with the                                                                                                                        | se settings: (C sample)                                                            |            |
| 2.59.28.8 112.198.77.241 124.107.2                                                                                                                      | 46.180 125.60.240.234 112.206.                                                     | 53.127     |
|                                                                                                                                                         |                                                                                    |            |
| Do you want attributes f                                                                                                                                | or the <i>first type</i> of node                                                   | S?         |
| -                                                                                                                                                       |                                                                                    |            |
| elect one or several columns                                                                                                                            |                                                                                    |            |
| elect one or several columns                                                                                                                            |                                                                                    |            |
| elect one or several columns                                                                                                                            |                                                                                    |            |
| elect one or several columns                                                                                                                            |                                                                                    |            |
| elect one or several columns                                                                                                                            |                                                                                    |            |
| elect one or several columns                                                                                                                            | a second ture of node                                                              | 52         |
| elect one or several columns Which column defines th                                                                                                    | e second type of node                                                              | s?         |
| elect one or several columns Which column defines th DestIP                                                                                             | e second type of node                                                              | s?         |
| elect one or several columns Which column defines th DestIP Comma-separated ","                                                                         | e second type of node                                                              | s?         |
| elect one or several columns Which column defines th DestIP Comma-separated "," Imple of nodes extracted with the                                       | e second type of node                                                              | s?         |
| elect one or several columns Which column defines th DestIP Comma-separated "," Imple of nodes extracted with the                                       | e second type of node                                                              | s?         |
| elect one or several columns Which column defines th DestIP Comma-separated "," Imple of nodes extracted with the I2.91.163.100 (202.91.163.60) (202.91 | e second type of node<br>se settings: (♂ sample)<br>163.31 202.91.163.31 202.91.16 | s?<br>3.31 |

Then in the optional items, I choose to enable the option [weight the edges]. Then hit Build and download the network (GEXF) as show below:



# KeyStep3: Load GEXF into Gephi

Run Gephi and open the downloaded Syslog-2013-4.GEXF file.

| M Import report     |                       | X                    |  |  |  |  |
|---------------------|-----------------------|----------------------|--|--|--|--|
| Source: syslog-201  | 3-4.gexf              |                      |  |  |  |  |
| Issues Report       |                       |                      |  |  |  |  |
| Nodes               | Nodes Issues          |                      |  |  |  |  |
| 🕕 🕕 Default edge t  | ype set as UNDIRECTED | INFO                 |  |  |  |  |
| () GEXF version (   | 1.1 (deprecated)      | INFO                 |  |  |  |  |
|                     |                       |                      |  |  |  |  |
| Graph Type:         | Directed V            | Auto-scale           |  |  |  |  |
| # of Nodes:         | 23327                 | Create missing houes |  |  |  |  |
| # of Edges:         | 30108                 | New graph            |  |  |  |  |
| Dynamic Graph:      | no                    | 🔘 Append Graph       |  |  |  |  |
| Hierarchical Graph: | no                    | 🔘 Time frame         |  |  |  |  |
|                     |                       | OK Cancel            |  |  |  |  |

I am presented with this screen once the GEXF file is loaded:

| Gephi 0.8.2 - Project 0                      |                                                           |                        | 1         | — 🗉 <b>— X</b>                                   |
|----------------------------------------------|-----------------------------------------------------------|------------------------|-----------|--------------------------------------------------|
| File Workspace View Tools Window Plugins     | Help                                                      |                        |           |                                                  |
| 😝 Overview 🛅 Data Laboratory                 | 📮 Preview                                                 |                        |           | XI                                               |
| Partition Ranking #                          | Graph #                                                   |                        |           | Context #                                        |
| Forder Loope a rank parameter                |                                                           |                        | ♥ Herardy | Konkes: 20027 G<br>Edges: 2009<br>Directed Graph |
| E T<br>Leyout # Streaming<br>Choose a layout |                                                           |                        |           |                                                  |
| -46: Propertos>                              |                                                           |                        |           |                                                  |
| Present                                      | ₽<br>==<br>A<br>A<br>A<br>? E • 1 T ■ [] (a) 2 − ] A • A• | Arial Bold, 32 — 🕕 🔳 🔞 | 4         |                                                  |

## Data cleansing/Exclusions:

I excluded records that had the following source IPs:

| Source IP      | Occurence |
|----------------|-----------|
| (blank)        | 10036     |
| 192.169.55.45  | 8894      |
| 192.0.2.43     | 6744      |
| 202.91.161.143 | 1733      |
| 202.91.161.153 | 1035      |
| 0.0.0.0        | 855       |

### Non Actionable source IPs :

The Blank IP address and 0.0.0.0 do not contain actionable IP addresses.

### **Known False Positives:**

The IP 192.169.55.45 is the internal IP address of our US Server (74.115.208.105). These syslog entries consists of known "Logon Failure event" that is the "expected behavior", while the IP 192.0.2.43 is the IP address of our firewall itself that generate heartbeat packets. These are known to be "false positives". The same is true with both 202.91.161.143 and 202.91.161.153 which are company owned IP addresses that are subject to Access control list that were triggered.

I then use **Partition/Type** to color code the sourceIP (Red) and destinationIP (Blue). This helps to clearly show us which nodes are the source (of attacks) and which nodes are the destination (targets) of attacks.



Then I went to **Ranking/Nodes** and selected **Degree** to apply different Node Sizes (5 to 200) based on it. I wanted to be able to visually identify nodes that are the source of most attacks or destination of the most attacks.

| Partition  | Ranking 🕷 |                 |
|------------|-----------|-----------------|
| Nodes Edge | es        | 🕰 🖄 📎           |
| Degree     |           | ▼               |
| Min size:  | 5 🊔       | Max size: 200 🚔 |
| Range:     | 0         | ]               |
|            | 0         | 282             |
| Spline     |           | 📾 🚺 Apply       |

Then I applied Ranking/edges/**Weight. I wante**d to be able to identify the occurrence of each combination of source and destination nodes. The thicker the lines, the more the occurrence of both the source and destination in events.

| Partition  | Ranking 🕷 |           |
|------------|-----------|-----------|
| Nodes Edge | es        | 🥥 🎘 🎘     |
| Weight     |           | •         |
| Color:     |           |           |
| Range:     | 0         | 0         |
|            | 1.0       | 893.0     |
| Spline     |           | 📾 🔽 Apply |

I then computed for the following statistics: Average Degree, Modularity, EigenVector Centrality, and Average Path Length. This will give us the following values:

## **Modularity Report**

#### Parameters:

Randomize: On Use edge weights: On Resolution: 1.0

#### **Results:**

Modularity: 0.818 Modularity with resolution: 0.818 Number of Communities: 309



## **Eigenvector Centrality Report**

#### Parameters:

Network Interpretation: directed Number of iterations: 100 Sum change: 0.0

#### **Results:**



### **Eigenvector Centrality Distribution**

Here are the statistics AFTER computation is finished:

| Statistics                      |       | ć   | P % |
|---------------------------------|-------|-----|-----|
| Settings                        |       |     |     |
| 🗷 Network Overview              |       |     |     |
| Average Degree                  | 1.215 | Run | 3   |
| Avg. Weighted Degree            |       | Run | ۲   |
| Network Diameter                | 1     | Run | 3   |
| Graph Density                   | 0     | Run | 3   |
| нгтэ                            |       | Run | •   |
| Modularity                      | 0.815 | Run | 3   |
| PageRank                        |       | Run | •   |
| Erdös Number                    |       | Run | ۲   |
| Connected Components            |       | Run | •   |
| 🖻 Node Overview                 |       |     |     |
| Avg, Clustering Coefficient     | 0     | Run | 3   |
| Clustering Coefficient          | 0     | Run | 0   |
| Eigenvector Centrality          |       | Run | 3   |
| 🗷 Edge Overview                 |       |     |     |
| Avg. Path Length                | 1     | Run | 3   |
| Neighborhood Overlap, Embeddedr | ness  | Run | 3   |



I applied ForceAltas2 layout then hit Run. I then get an output like this:

This graph has too many data points and it takes a long time to process. Next I proceeded to filter it to reduce the data points to smaller but still significant data population for us to analyze. The use of Giant component did not reduce the node population by a significant degree.

So I then filter based on the range of Degrees that each NODE has. It reduces the number of nodes to only those that have more than 15 incidents (sum of either sourceip or destinationIP occurrence). Items with less than 15 degrees will be filtered out. The nodes with less than 15 incidents are deemed to be **'uninteresting'**. This filter helps to **focus the analysis** on the larger events.

| Reset   🖪                   | Filters 🕷           | =                           |  |  |  |  |  |  |  |
|-----------------------------|---------------------|-----------------------------|--|--|--|--|--|--|--|
|                             |                     |                             |  |  |  |  |  |  |  |
| Library                     |                     |                             |  |  |  |  |  |  |  |
| i≡··· 📫 Attrib<br>i≣·· 📫 Ec | outes<br>qual       |                             |  |  |  |  |  |  |  |
| 🗄 📫 In                      | iter Edges          |                             |  |  |  |  |  |  |  |
| 🗄 🚊 In                      | itra Edges          |                             |  |  |  |  |  |  |  |
|                             | on-null             |                             |  |  |  |  |  |  |  |
|                             | artition Cou        | nt                          |  |  |  |  |  |  |  |
|                             | ar uuon cou<br>onao | i it                        |  |  |  |  |  |  |  |
|                             | Betweenr            | ess Centrality Double (Node |  |  |  |  |  |  |  |
| ···· T                      | Closenes            | s Centrality Double (Node)  |  |  |  |  |  |  |  |
| T                           | Compone             | nt ID Integer (Node)        |  |  |  |  |  |  |  |
| ····                        | Degree Ir           | nteger (Node)               |  |  |  |  |  |  |  |
| ···· T                      | Eccentrici          | ty Double (Node)            |  |  |  |  |  |  |  |
| ···· T                      | Eigenvect           | or Centrality Double (Node) |  |  |  |  |  |  |  |
| ···· T                      | In-Degree           | e Integer (Node)            |  |  |  |  |  |  |  |
| ···· T                      | Matchings           | s Count Integer (Edge)      |  |  |  |  |  |  |  |
| ···· T                      | Modularit           | y Class Integer (Node)      |  |  |  |  |  |  |  |
| ···· T                      | Occurren            | ces Count Integer (Node)    |  |  |  |  |  |  |  |
| Y                           | Out-Degn            | ee Integer (Node)           |  |  |  |  |  |  |  |
| I<br>I                      | weight H            | ioat (Eoge)                 |  |  |  |  |  |  |  |
| 🛨 🔲 Dyna<br>💷 🖆 Edgor       | rnic<br>c           |                             |  |  |  |  |  |  |  |
| 💷 💻 Cuye:                   | ə<br>ətor           |                             |  |  |  |  |  |  |  |
| 🖶 📫 Tono                    | loav                |                             |  |  |  |  |  |  |  |
| Save                        | d aueries           |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
| •                           |                     | • •                         |  |  |  |  |  |  |  |
| 🝸 Queries                   |                     |                             |  |  |  |  |  |  |  |
| 🖃 🍸 Rang                    | je (Degre           | e)                          |  |  |  |  |  |  |  |
| Pa                          | arameters           |                             |  |  |  |  |  |  |  |
| ••••• •                     | column: [           | Degree (Integer)            |  |  |  |  |  |  |  |
|                             | range: 15           | ) - 282<br>n franc          |  |  |  |  |  |  |  |
| Second Edited and Second    | rag subnite         | r nere                      |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
| <u> </u>                    |                     |                             |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |
| <u> </u>                    |                     |                             |  |  |  |  |  |  |  |
| Range (De                   | gree) Setti         | ngs                         |  |  |  |  |  |  |  |
| Range (De                   | gree) Setti         | ngs                         |  |  |  |  |  |  |  |
| Range (De                   | gree) Setti         | ngs<br>J<br>282             |  |  |  |  |  |  |  |
| Range (De                   | gree) Setti         | ngs<br>]<br>282             |  |  |  |  |  |  |  |
| Range (De                   | gree) Setti         | ngs<br>282                  |  |  |  |  |  |  |  |
|                             |                     |                             |  |  |  |  |  |  |  |

Then I applied the **Fruchterman Reingold** to the Layout, enable Text labeling, apply **Noverlap** and finally applied the **Label Adjust** to the layouts.

| Layout 🕷             | Streaming    |         | -    |  |  |
|----------------------|--------------|---------|------|--|--|
| Fruchter             | man Reingold |         | -    |  |  |
| 1                    |              |         | Stop |  |  |
| Fruchterman Reingold |              |         |      |  |  |
| Area                 |              | 90000.0 |      |  |  |
| Gravity              |              | 5.0     |      |  |  |
| Speed                |              | 5.0     |      |  |  |
|                      |              |         |      |  |  |
|                      |              |         |      |  |  |
|                      |              |         |      |  |  |

## I got a graphics like this:



From here, I could now easily see the number of 'Attackers' (in red) and whose node size indicates the larger number of nodes it 'attacks' (the larger the size of the red circles, the more nodes it attacks). Then there are 'thick red edges' that denote the weight (intensity) of the attacks against node/s

(destinationIPs). I also experimented with another layout by using **Yifan HU** and elected to use this Layout:





If I discount the nodes at the <u>outer</u> edges as 'uninteresting' and zoom-in I get this:

With TEXT label enabled (IP addresses shown in black):



# **Interpretation:**

# **Limitation of data**

As the data from the Syslogs only had Sourceip and DestinationIP addresses pairings, I had to set this up as a Bi-Partite Network as opposed to choosing Normal or the Citation type network. Thus the average clustering coefficient is 0. It is not surprising that we get the average path length and Network Diameter values to be 1.

This meant that our virtualization is limited to showing a single network's perspective, so it does not show nodes BEHIND the SourceIP. A hacker might conceivably be controlling several SourceIP in launching an attack against a network, and our syslog data will only show the different SourceIPs but NOT the IP of the hacker controlling the different SourceIPs (attacking Nodes). There would be no links from the attacking Nodes back to the hacker node.

We therefore lack the capability to detect communities outside of our own network. We are equally unable to use any of the centrality measures in a significant way.

# New Insights from Gephi Graphic:

We have a new found ability to visualize the network incidents to easily show Attackers (sourcelP in **red circles**) and Victims (DestinationIP **in blue circles**). We also gain *additional insights* into the magnitude of each attack from the **thickness of the edges**, and the number of nodes targeted from the **size of the attacking Nodes** itself.

In particular, we find among several items of interest, the following:

Several in house machines (Nodes) are accessing forbidden FACEBOOK website.
 I zoomed in on the lower right corner and reproduced it below:



This shows a significant number of NODEs (sourceIP) that are connecting ('attacking') to the same destination node: **31.13.76.8**. A research shows that this IP address belongs to Facebook. Note: Facebook is banned in the internal network, these syslog events quickly shows up the number of machines attempting to connect to Facebook.



Largest attacks come from an Indian IP address.
 For this I looked at the mid-lower section of the graph and zoom in to take a closer look at the largest RED circle node in the graph:



The IP belongs to SwiftMail in India and it is apparently targeting a lot of Nodes.



3. The second largest Red Circled Node is 182.117.228.158 (Chinese IP)





And so with the rest of the largest attackers:

| Data Table 🕺                                                                                                             |       |          |                   |           |            |         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-------|----------|-------------------|-----------|------------|---------|--|--|--|
| Nodes Edges 🛛 🛛 Configuration 🛛 🔂 Add node 🛨 Add edge 🏙 Search/Replace 🕮 Import Spreadsheet 🕮 Export table 👫 More action |       |          |                   |           |            |         |  |  |  |
| Nodes                                                                                                                    |       | Туре     | Occurrences Count | In-Degree | Out-Degree | ⊽Degree |  |  |  |
| 202.91.87.36                                                                                                             | so 20 | SourceIP | 299               | 0         | 282        | 282     |  |  |  |
| • 10.21.21.9                                                                                                             | so 10 | SourceIP | 372               | 0         | 134        | 134     |  |  |  |
| 182.117.228.158                                                                                                          | so 18 | SourceIP | 116               | 0         | 116        | 116     |  |  |  |
| 202.94.147.114                                                                                                           | so 20 | SourceIP | 106               | 0         | 87         | 87      |  |  |  |
| 182,155,23,191                                                                                                           | so 18 | SourceIP | 87                | 0         | 86         | 86      |  |  |  |
| 111.179.93.16                                                                                                            | so 11 | SourceIP | 81                | 0         | 81         | 81      |  |  |  |
| • 10.21.21.13                                                                                                            | so 10 | SourceIP | 289               | 0         | 77         | 77      |  |  |  |
| 183.63.70.130                                                                                                            | so 18 | SourceIP | 78                | 0         | 77         | 77      |  |  |  |
| 111.182.205.132                                                                                                          | so 11 | SourceIP | 75                | 0         | 75         | 75      |  |  |  |
| • 111.2.2.123                                                                                                            | so 11 | SourceIP | 74                | 0         | 73         | 73      |  |  |  |
| • 113.231.174.87                                                                                                         | so 11 | SourceIP | 67                | 0         | 67         | 67      |  |  |  |
| 202.152.202.145                                                                                                          | so 20 | SourceIP | 67                | 0         | 67         | 67      |  |  |  |
| • 114.101.211.168                                                                                                        | so 11 | SourceIP | 66                | 0         | 66         | 66      |  |  |  |
| 202.83.167.42                                                                                                            | so 20 | SourceIP | 69                | 0         | 65         | 65      |  |  |  |
| 223.246.37.39                                                                                                            | so 22 | SourceIP | 66                | 0         | 64         | 64      |  |  |  |
| 163.179.13.127                                                                                                           | so 16 | SourceIP | 62                | 0         | 62         | 62      |  |  |  |
| 192.168.2.89                                                                                                             | so 19 | SourceIP | 123               | 0         | 61         | 61      |  |  |  |
| • 10.21.13.19                                                                                                            | so 10 | SourceIP | 130               | 0         | 60         | 60      |  |  |  |
| 118.135.153.38                                                                                                           | so 11 | SourceIP | 60                | 0         | 60         | 60      |  |  |  |
| 115.240.67.242                                                                                                           | so 11 | SourceIP | 57                | 0         | 57         | 57      |  |  |  |

So merely investigating and responding appropriately to the top 1% of the attackers, we are effectively able to significantly reduce the number of attacks. Of the total 17359 attackers that accounted for 37,242 incidents, resolving the top 1% of the attackers (173 nodes) accounted for 17% of total incidents (6510 incidents).