
Brief View In Prioritizing Website Security

nitrob@synfyre.net
ROOTCON 6; Sept. 7-8, Presented by : nitrob

Disclaimer!
* The demos are done in a controlled environment and no
other information will be disclosed that isn’t included or

related in the presentation.

Overview

• Hurr Durr *Introduction
• Notable Events & Happenings
• Basic Information
• Diving Into Development
• Security By Design
• Improving Improvements
• Conclusions & End Thoughts
• Q & A

Hurr Durr *Introduction
@me

• First time speaker
• please bare with me

• High School dropout
• dropped out twice
• haven’t finished high school yet

• Former leader of PhilKer (Philippine Hackers)
• 2009 to 2012

• Home brewed PHP Application Developer
• made my first app when I was 15.

• Security Infrastructure Enthusiast
• I’m insane in terms of implementing security.

•アニメオタク「Anime Otaku」
• I watch anime all the time, sometimes sub alongside with fansub groups

Notable Events & Happenings
* Things happened that are note worthy.

International Events
• 2011 is dubbed as “The Year of the Hacker”

•Anonymous, Lulzsec, Rampant Indo-Pak Cyber Wars

• RSA Security, March ’11
• Social Engineering crippled them easily
• A target in Operations Aurora & Shady RAT

• PlayStation Network, April ‘11
• Different websites with common SQL Injections
•An estimated $171 million worth of loss.

• Citi Group, June ‘11
• 200,000 customer account details stolen

• FBI Partner InfraGuard Atlanta, June ’11

• LinkedIn, June ‘12
• 6.5 million password hashes stolen, 200,000 so far cracked.

• Hundreds more, that a worthy of being included but too many

Local Events
• OVP defaced over and over again from June’11~Jan’12

• Done by : Philker, PrivateX

• FDA defaced, June 16’11
• Done by : Philker

• PNRI defaced, August 25’11
• Done by : PrivateX

• Chinese websites defaced, April’12
• Joint by Anonymous #OccupyPhilippines, PrivateX, many more

Basic Information
* Information that will help you understand the basis of

website security.

• First and foremost, never trust user input.

• Use the POST method for actions and GET for retrieval

• Be mindful of implementing security in all areas

• Design a system in an architect’s perspective

• Be paranoid

• Think like an attacker would do

• Create logs for every important actions taking place

• Educate users and fellow colleagues in security

• Use HTTPS whenever possible

>101’s

Preventing It

• One of the most common attacking vectors
• Very common if a website mostly use $_GET
• Can be used by anyone with knowledge in exploiting HTML
• Persistent*stored / Non-Persistent*reflected

>XSS

• Escape all possible HTML input
• Be aware of forms using URL parameters for processing
• Set cookies to “HttpOnly”

Preventing It

• Only exists when a website uses file system combined with user input
• Attack vectors and severity of the damage may vary.
• Used to inject malicious code into a vulnerable website

>LFI / RFI

• Be mindful of the usage of require or include
• Check first the included file if it exists
• Trimming the input by using basename() in PHP
• Set allow_url_include in the php config to “Off”

Limitations *courtesy to Wikipedia

• IMO, rare kind of vulnerability in developed websites
• It relies on the authenticated user
•An indirect kind of attack whereas exploits the site’s trust

>CSRF

1. The attacker must target either a site that doesn't check the referrer header (which is
common) or a victim with a browser or plugin bug that allows
referrer spoofing (which is rare).

2. The attacker must find a form submission at the target site, or a URL that has side
effects, that does something (e.g., transfers money, or changes the victim's e-mail
address or password).

3. The attacker must determine the right values for all the form's or URL's inputs; if any
of them are required to be secret authentication values or IDs that the attacker can't
guess, the attack will fail.

4. The attacker must lure the victim to a Web page with malicious code while the victim
is logged in to the target site.

•When necessary use the POST method when dealing with forms
• Double check data received into the server
•Apply additional checking to verify data

>>Preventing CSRF

Preventing It

• THE MOST common attack method used
• Can be used by almost anyone even with beginner knowledge
•A lot of tools are available dedicated to deliver SQLi attacks
• One of the best reasons why developers get into trouble
• The severity of the attack may lead to different disasters

>SQLi

•Always escape input, it’s a simple rule but it will save you
• Limiting the number of queries that will execute
• Using proper coding standards

Preventing It

•An advanced way of exploiting a vulnerable system
• Relies on executing code from a remote server to inject mcode.
•A combination of XSS/LFI/RFI/CSRF/SQLi can be executed

>RCE

•All of what I’ve said above.

Diving Into Development
* My fundamentals into developing an application with

extensive security to create peace and prosperity.

• Follow an application coding structure

• Design it like an architect

• Balance usability with security

•Apply user privileges/permissions

• Don’t mistake later for now

• Take part in the community

>From the Drawing Board

• The best method is the MVC pattern

• If not, use apache’s mod_rewrite to manipulate URLs

• Organize your scripts to prevent clutter

• Map out the entire application

>>Follow An App. Coding Structure

• Start with the basics before going to the advanced stuff

• Look out for the tiniest mistake in development

• Take notes in every change made in development

• Consult wit the people who specializes in particular fields

>>Design It Like An Architect

• One of the essence of secured applications

• 50% logic & 50% security

• UI matters to some users

>>Balance Usability With Security

• In every area, there should be limits to a certain user/usergroup that can
access

• Log certain activities that will help in maintaining security throughout
the application

>>Apply User Privileges/Permissions

•You gotta do it, it helps later on

•You may regret it in the long run

• This will let you avoid disaster like law suits, user privacy concerns,
stolen data, or even bankruptcy

>>Don’t Mistake Later For Now

• Take part in security blogs to know the latest security trends and
vulnerabilities.

• Let your community asses the security what you have now, and offer
them bounties. As what Google, Facebook, & Microsoft would do.

• Organize hackthons that centers into developing your website for the
greater good of the users who uses it.

>>Take Part In The Community

Security By Design
* The fundamentals in creating security at the same time

delivering what the application needs to function

• 2 step verification

• Temporary/Application passwords

• User geography analyzer

•Advanced cookie implementation

>Security Design Examples

• To my knowledge, first implemented by Google Services in spring of 2011.
Followed by Facebook months later; Went available for a few months in the
Philippines.

• It registers two numbers, your mobile device number and your phone number
as backup.

• Sends you a verification code, that will help the system verify you are
currently logging in to the account

• Costly to implement for start up companies, but better for enterprise sized
companies

>> 2 Step Verification

•As seen on Facebook & Google (2 step verification)

• Provides the user to have a different password to be used on a 3rd party
application (ex. Thunderbird & Tweetdeck)

• Temporary passwords provide extra security if a system or network you’re
trying to log on may be infected of keyloggers and trojans

• Expires on use

• Easy to implement, good for start ups who want extra security and
recommended for enterprise sized companies having corporate financial data

>> Temporary/Application Passwords

• Facebook uses it, you may just never feel it.

• System will analyze automatically your past logins from the database
containing data such as an IP address, browser useragent, etc.

• Compares your past logins if they are in the same geographical location. For
example, if you frequently log in to city A with browser X, then someone logged
in your account from city B with browser Y. The system will automatically
notifies the user and lock the account temporarily.

•An advantage, but not recommended if your website is still small.

>> User Geography Analyzer

• Once used it on SynFyre.

•A unique hash is tied to a cookie then cookie data on the database.

• Upon visit on the website, system will automatically looks up in the database
for the data of the hash.

• Cookie data can be only be used in the server, therefore not exposed in client
side.

• If some of the user data doesn’t match from the cookie data, user will be asked
to input his/her password

• If the login is successful, updates the cookie data with the latest user data; If it
fails, logs necessary details in the database

>> Advanced Cookie Implementation

Improving Improvements
Improving what is already done to make it even more secure.

(LOL)

•Asses on what’s in development and what’s already in production
and maintain communication with developer and security teams.

• Separate development and production assessment, and maintain a
grip hold of what’s in production.

> Assessment Is Key

• Let your users be the security ninjas by offering goodies to those
who can find vulnerabilities first before someone wrecks havoc.

• It drives users to be good citizens instead of being bad, it also
help the general community who uses it.

• This is the reason why Facebook & Google doesn’t get hacked.
Since their users are also helping making them safe.

> Getting The Community Involved

• Every now and then, when we release a new version of software
to the public there’s always a chance that it will have a 0 day.

• 0 days, are exploits that can be found on computer software upon it’s
release without the acknowledgement of the public of such vulnerability.

• Even if it’s already secure test it again, blackhats always have a
lot of tricks up their sleeve.

> If there’s something new, test it.

Conclusions & End Thoughts
Wrapping it all up

• Tons of attack vectors and tons of tools available

• No system is relatively safe from vulnerabilities

• Don’t underestimate everyone

•Anything sent in HTTP can be forged and exploited easily

> Security Exploitation

• Design it like an architect

• Balance the flow of development and security

• Don’t trust user input, filter everything

• Paranoia is included

• Use HTTPS whenever possible

> Security Implementation

•My contact details recently changed due to a new project, if you
want to get a hold of me through email, loophaze@hakz.co

• Follow me on Twitter if you’re interested in my blabber,
@loophaze

• My state of mind in the hacker underworld is currently futile and
will be back in the scene hopefully soon.

> End Thoughts

Question & Answer
Ask away!

