

BIANCA GADIANA
@lckhrst

ENHANCING YOUR RED
TEAM ARSENAL:

OPTIMIZING HAVOC C2

3

2

1whoami

AGENDA

Introduction to Offensive Security and

C2 Frameworks

Deep Dive into Havoc C2 Architecture

Customizing Havoc C2 Profile for your

Operational Needs

Developing and Integrating Custom

Agents

Q&A

4

5

6

Whoami – Bianca Gadiana

• 4+ years in Information Security

• Offensive Security Team Lead

Introduction to Offensive Security and C2
Frameworks

The Role of Command-and-Control (C2) in Offensive
Security

• A C2 framework is the centralized system used by attackers
(in this case, red teams) to manage compromised systems

• C2s enhances Red team Operations by allowing red
teamers to have room for:
• Operational flexibility

• Stealth and evasion through evasion techniques

• Real-time command execution on compromised machines for
dynamic engagement responses

Overview of C2 in red team operations

Common Terminologies
• C2 Server : Serves as a hub for the agents to call back to

• Agents/Payloads: The agent is generated by the framework and
is responsible for calling back to the server.

• Listeners: waits for a callback on a specific port or protocol.

• Beacons: This is the process of the Agent calling back to the
server.

Importance of flexibility and
customization in modern red teaming -
Havoc C2
• Adaptability

• Profile Customization

• Custom payloads

• Signature and behavioral Evasion

• Modular design

Types of C2 Frameworks
There are both free (open source) and commercial
frameworks

OPEN SOURCE C2s COMMERCIAL C2s

Types of C2 Frameworks

It is ideal to use multiple C2 frameworks. Choose the frameworks
that are most appropriate to use when trying to achieve the
predefined objectives during the attack emulation stage.

 Choose a framework that can cater the following:
• Advanced automation capabilities

• Robust security features

• Extensive 3rd party integration

Deep Dive into Havoc C2 Architecture

Understanding Havoc's Core Components

Teamserver

• Written in Go lang

• This is the central server responsible for managing listeners, interacting
with agents, and handling operator commands. The teamserver
processes agent callbacks, logs, and task execution

• Logs: Havoc's teamserver logs everything from agent input and output to
screenshots and downloads.

Profiles

• Profiles define key operational parameters

• They enable customization based on the target environment,

• Profiles are written in the Yaotl configuration language and can
be used to ensure that the Teamserver runs with specific settings,
including debugging options and verbose logging

Understanding Havoc's Core Components

Client
• Cross-platform UI written in C++ and Qt

Understanding Havoc's Core Components

Understanding Havoc's Core Components

Listeners
• These allow communication between compromised systems and

the teamserver. Havoc supports multiple listener types, such as
HTTP, HTTPS, SMB, and External C2

Agents
• The deployed payloads that execute commands on

compromised systems. Havoc's primary agent is called "Demon,"
which can be configured for evasion and communication.

Understanding Havoc's Core Components

Demon – primary Havoc agent

written in C/ASM

Demon Payload – currently

supports x64 EXE/DLL, shellcodes

and service exe

Agents
• You can configure your payload to choose between different

sleep obfuscation techniques

Understanding Havoc's Core Components

WaitForSingleObjectEx – not a sleep

obfuscation technique. It just delays

the execution and doesn't perform

any kind of sleep encryption

Ekko – currently supports x64

EXE/DLL, shellcodes and service exe

Foliage – creates a new thread and

uses NtApcQueueThread to queue an ROP

chain that encrypts our agent memory

and delays execution.

Understanding Havoc's Core Components

Not so new sleep obfuscation
technique on Havoc

Zilean (using RTlRegisterWait)

Source: https://x.com/C5pider/status/1653449661791739904

https://x.com/C5pider/status/1653449661791739904

Customizing Havoc C2 Profile for your
Operational Needs

Overview on C2 Profile

Overview
• The Havoc Yaotl configuration language is a configuration file

that contains everything that the teamserver needs to run. Yaotl is
a fork of the popular configuration language HCL.

• Resources: https://github.com/hashicorp/hcl

Customizing Your C2 Profile

Team Server Block

• The teamserver can be configured to
listen on a specific bind address and port
with the following directive:

• Host - The bind address used by the
teamserver to accept Client connections.

• Port - The port the teamserver listens on for
Client connections.

Operators Block
• The Operators block specifies the users that are going to be

allowed to connect and interact with the teamserver. To add a
new user you only need to specify the username and password.

Customizing Your C2 Profile

Listeners Block

• The Listeners block
allows the operator to
start a listener without
doing it manually in the
client interface.

Customizing Your C2 Profile

Customizing Your C2 Profile
Listeners Block: Customization

HTTP/HTTPs Block:
• You can change the name of your

listener base on operation specific
context – «Corporate Network Listener -
SSO Traffic»

• User agent - Update to a more modern
and widely used user agent

• URIs – Using realistic or legitimate-
looking URIs

• Response – Replace the default “X-
Havoc:true”, “X-Havoc-Agent: Demon”.
You wouldn’t want to be too obvious!

Demon Block

Customizing Your C2 Profile

Injection Block – The Injection block

specifies where the Demon will inject its

code when running processes. It will use

notepad.exe in both 64-bit (Spawn64)

and 32-bit (Spawn32) environments.

Binary Block – defines specific

modifications that will be applied to

the compile payload (demon)

• The Demon block specifies the default
behavior of the havoc demon agent.

Demon Block: Customization

Customizing Your C2 Profile

Injection Block:
• Customize the injection target based on the specific

goals

Binary Block:
• Instead of leaving them blank, replace the DLL

names with legitimate-looking binary names that
are often found in the system.

Service Block
• The Service block lets you configure

the service API endpoint and
password.

Customizing Your C2 Profile

When do we use this?
• For defining external services or endpoints that the Command and

Control (C2) server will interact with.

Depends on your existing infrastructure
 Use Case 1: Multi-Endpoint C2 Infrastructure for Redundancy
 Use Case 2: Payload Distribution
 Use Case 3: Data Exfiltration

Targeting a Specific Network Environment
 Use Case 4: Potential internal services that your C2 server might
interact with

HOW IT WORKS
Running your Havoc Team Server and Client

Running the team
server requires a

profile file

Running the client

connect using the
operator’s account we

set in our custom
profile

Run the teamserver ./havoc server --profile ./profiles/havoc.yaotl -v –debug
Run the client ./havoc client

Payload Generation and Execution

HOW IT WORKS

Generating Demon
Payload

Downloading Demon
payload on target

machine

After running the payload we’ll
get an agent callback on our C2

HOW IT WORKS

On table view, you can see the
Agent ID, User, Computer, OS and PID

Session View
• Agent callbacks can be

viewed in 2 ways
• Graph View

• Table View

On graph view, you can see the
Agent ID, running process, and

PID

Explorer
• Process List machine

• File Explorer

HOW IT WORKS

List of all running
processes

Navigate through files
using File Explorer

Interacting with Agent

• Havoc provides an inbuilt
modules or commands
that you can invoke
through help option.

HOW IT WORKS

<your_command_here>

HOW IT WORKS

LOOTS!!!

View > Loot

Can view loots on
specific agent ID

List of files on side
panel

Loot Collection
Pane

Developing and Integrating Custom Agents

Custom Agents
• Using Havoc's Service API, custom, third-party agents can be

written to interact with the teamserver using the intermediate
Python API.

• https://github.com/HavocFramework/havoc-py

<SLIDE TITLE>

Custom Agents

Thanks!

References &
Credits

All credits and references go to the creator of Havoc Framework
@C5pider

• https://github.com/HavocFramework/

• https://github.com/HavocFramework/Talon

• Other references:

• https://github.com/CodeXTF2/PyHmmm

Q & A

	Slide 1
	Slide 2: ENHANCING YOUR RED TEAM ARSENAL: OPTIMIZING HAVOC C2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: The Role of Command-and-Control (C2) in Offensive Security
	Slide 7: Overview of C2 in red team operations
	Slide 8: Importance of flexibility and customization in modern red teaming - Havoc C2
	Slide 9: Types of C2 Frameworks
	Slide 10
	Slide 11
	Slide 12: Understanding Havoc's Core Components
	Slide 13
	Slide 14
	Slide 15: Understanding Havoc's Core Components
	Slide 16
	Slide 17
	Slide 18: Understanding Havoc's Core Components
	Slide 19
	Slide 20: Overview on C2 Profile
	Slide 21: Customizing Your C2 Profile
	Slide 22: Customizing Your C2 Profile
	Slide 23: Customizing Your C2 Profile
	Slide 24: Customizing Your C2 Profile
	Slide 25: Customizing Your C2 Profile
	Slide 26: Customizing Your C2 Profile
	Slide 27: Customizing Your C2 Profile
	Slide 28: HOW IT WORKS
	Slide 29: HOW IT WORKS
	Slide 30: HOW IT WORKS
	Slide 31: HOW IT WORKS
	Slide 32: HOW IT WORKS
	Slide 33: HOW IT WORKS
	Slide 34
	Slide 35: Custom Agents
	Slide 36: <SLIDE TITLE>
	Slide 37: Custom Agents
	Slide 38: Thanks!
	Slide 39: Q & A

