
Fuzzing: Revisiting
Software Security

NAFIEZ @ ROOTCON 15, 2021

About Me

An independent security practitioner located in Malaysia with passion in

vulnerability research, fuzzing, reverse engineering and exploit

development. I play RC Drift.

Some of my notable works can be found here

- https://zeifan.my

https://zeifan.my

Overview of Software
Security

Why It Still Failed?

● Lack of Secure Development Lifecycle

● Ignorance from vendor by trying to avoid fixes

● Security is expensive

● Third party software developer do not follow mitigations built by Microsoft

● Security ain’t priority

What Are We Seeing Here?

● Microsoft has improved the security in their operating systems by killing and eliminating bug classes

● Exploit mitigations on different aspects, vulnerability become useless

● Finding vulnerability is HARD

● Competitor between researchers, vendors and boutique firm

● Exploit development costly

Hunting For Vulnerability

General (1/2)

● Started from lowest hanging fruit to the complex part. My previous work on hunting vulnerability in

Antivirus covering various security issue and methods.

● Methods are similar, depending on the target

● Study other researchers write ups and analyzed from scratch to understand how it works. It helps to

identify bugs and ideas on how to exploiting it.

● Reverse engineer patches and updates

General (2/2)

● Easiest way to hunt for vulnerability is the access to source code.

● However it is impossible to have access to source code when it comes to closed source program.

Heavily involved in reverse engineering.

● Reverse engineering is HARD!

● One way to approach is to fuzz. Fuzzing is fun but hard too and may cause disappointment :D

Fuzzing Approach (1/2)

● Rely on traditional method such file format fuzzing

○ Byte and Bit mutation FTW!

● Perform variant hunting

○ APIs, Functions, etc.

● Dumb & Smart Fuzzers

○ Custom & Public

Fuzzing Approach (2/2)

● Number of CVEs assigned

● Custom fuzzer built to work on specific cases such file format

○ Limited to the target itself

● Public fuzzer, we used any available fuzzers such as WinAFL and CERT BFF

● WinAFL supports coverage guided, APIs

● CERT BFF only file format, support custom Python plugin

Fuzzing Stats / Results

Public Fuzzer (1/2)

● WinAFL and CERT Basic Fuzzing Framework (BFF) are the main options on publicly available fuzzer

● WinAFL is powerful and smart fuzzer

○ Fast (depends on you harness) and it supports instrumentation too

● CERT BFF using traditional methods without coverage guided or instrumentation

○ It supports Python plugin and you can write your own fuzzer

○ The longer it runs, the slower it become :D

● Found numbers of vulnerability and assigned with CVEs for public record on vulnerability reported

● Next page shows the numbers of issue found

○ Not everything included due to some don’t have public advisory from vendors

○ I reported numbers of issue however only couple of it has CVEs assigned

Public Fuzzer (2/2)

MSRC Case 58680 - Windows GDI

MSRC Case 58593 - Windows GDI

MSRC Case 58745 - Windows GDI

MSRC Case 58843 - Windows GDI

CVE-2020-10222 - Nitro PDF Software

CVE-2020-10223 - Nitro PDF Software

CVE-2020-25290 - Nitro PDF Software

CVE-2019-19817 - Nitro PDF Software

CVE-2019-19818 - Nitro PDF Software

CVE-2019-19819 - Nitro PDF Software

* there are more…

Custom Fuzzer (1/5)

● File format fuzzing still effective these days, although it slow but we do found numbers of vulnerabilities

● Main idea is to find bug as much it can

● Heavily focus on C / C++ types of application

● Capable to fuzz complex software

● Able to catch bugs and minimize results

● Purely written in Python

Custom Fuzzer (2/5)

● Mutation on input file

○ e.g. file.exe input.test

● Covering bit flip

○ Randomize range values

○ Strings, special characters

● Detecting crashes via debugger, slow but it works :)

○ cdb, PyKD or WinAppDBG

○ Page Heap enabled

Custom Fuzzer (3/5)

● Integers

○ Signed and Unsigned byte

○ Signed and Unsigned word

○ Signed and Unsigned dword

○ Signed and Unsigned qword

○ Negative numbers (ranging from 0x80000000 to 0xffffffff)

○ Positive numbers (ranging from 0x10000000 to 0x7fffffff)

Custom Fuzzer (4/5)

● Strings and ASCII

○ Large string s

○ Empty strings

○ Length tags modifications

○ NULL terminator

○ Append and prepend on tagged strings

Custom Fuzzer (5/5)

● Detecting crashes could trigger false alarm

● Split out the result by performing a better filtering

○ Check last exceptions e.g. address NULL or has something on memory / register

● Important info

○ Access violation

■ Last crash disassembly code, Register value, Stack trace (sometimes inaccurate)

○ Manual verification, debugging FTW

What’s Inside the Custom Fuzzer?

● No special code or techniques, just a “copy cat” code from the Internet with major modification

● Bit flip FTW :)

● No taint or guided features, fully file format fuzzer

● Initial idea is to build a framework, but looks hard LOL

● It caught real vulnerability on complex software such Microsoft Office

● Too slow but satisfied with its results XD

Test Case - Fuzzing Example

● Targeting Hancom Word processing application. Vulnerability reported to KISA.

● Corpus size around 25 KB

● Bit Flip mutation

○ Covering random range of values starting from 0x0 until 0x7FFFFFFF

● Bug found after 4 hours running, there are three different vulnerability found

● Example of fuzzing test case in next page

File Format Fuzzed

Original File Mutated File

When the Word started to process and parse for the contents of the DOC file, crash
will trigger due to malformed contents on the file formatting.

Example Minimize Results

State the Art &
Understanding the Attack
Surface

Before that...

● We need to understand how the mitigations takes place

● Are the targets are really protected with the current mitigations?

● How far can we demonstrate the impact of the bug? Exploitable? Partially exploitable?

Non-exploitable?

● Understand your target is very important

State the Art

● Finding memory corruption used to be easy with exploitable results

● Historically exploited for decades (we can observe in the wild exploits)

● Attack surface is always there it’s just the matter of the understanding how it works

● Heavily involved reverse engineering process

https://ctf-wiki.github.io/ctf-wiki/pwn/windows/stackoverflow/figure/demo2-1.png

https://ctf-wiki.github.io/ctf-wiki/pwn/windows/stackoverflow/figure/demo2-1.png

 https://jnet.i.lithium.com/t5/image/serverpage/image-id/18394i1F93FD8C873152B4/image-size/large?v=1.0&px=999

https://jnet.i.lithium.com/t5/image/serverpage/image-id/18394i1F93FD8C873152B4/image-size/large?v=1.0&px=999

https://www.blackhat.com/docs/asia-17/materials/asia-17-Li-Cross-The-Wall-Bypass-All-Modern-Mitigations-Of-Microsoft-Edge.pdf

https://www.blackhat.com/docs/asia-17/materials/asia-17-Li-Cross-The-Wall-Bypass-All-Modern-Mitigations-Of-Microsoft-Edge.pdf

https://twitter.com/zeifan/status/1298074650098819072/photo/1

https://twitter.com/zeifan/status/1298074650098819072/photo/1

After...

● Finding bugs ain’t easy task nowadays

● Modern exploitation is hard and expensive

● One has to chain multiple bugs to achieve powerful exploitation

● Exploit development costs continue growing

Attack Surface

● Bugs are exist, the entry point is important to hunt

● Patches and fixes let us understand what have been fix previously and could introduce another bug

● Variant hunting indeed important however it’s pretty hard without proper guided fuzzing

● Input, processing and parsing are the common attack surface

Real World Vulnerabilities

● Found numbers of bug on various software

● In this talk, I’ll present case study on Microsoft Access and Hancom Word Processor

● Microsoft did a great job on fixing and future plan release to eliminate the bugs that reported

● Fun fact about Hancom, I reported vulnerability to KISA however no further updates / news from them

on the reported bug

Case Study #1 :
(CVE-2020-16957) Microsoft
Access Connectivity Engine
Remote Code Execution
Vulnerability

Summary

The bug was found with my custom fuzzer and Microsoft acknowledge me on their portal along with the

CVE-2020-16957. The idea fuzzing Microsoft Access is by feed the fuzzer with 10MB+ file size

A heap corruption was detected when handling a specially crafted Access database and the bug reproducible

on Windows 10 x64 version 1909. Affected version of Microsoft Access 2016 with version 16.0.13029.20308.

Analysis (1/2)

Analysis (2/2)

Case Study #2 - (MSRC Case
60509) Microsoft Access 2016
Heap-Based Out-of-Bounds
Read

Summary

An Out-of-Bounds Read vulnerability has been detected when handling a specially crafted Access database.

The following crash was observed in Microsoft Access 2016 with Windbg. The vulnerability was found during

fuzzing activity.

Microsoft consider this bug as moderate info disclosure meaning no fix and it will only included in the next

product cycle (not the monthly patch)

Analysis (1/2)

Analysis (2/2)

Case Study #3 - (MSRC Case)
Microsoft Access 2016
Out-of-Bounds Read
Vulnerability

Summary

An Out-of-Bounds Read vulnerability has been detected when handling a specially crafted Access database.

The following crash was observed in Microsoft Access 2016 with Windbg. The vulnerability was found during

fuzzing activity.

Microsoft does not consider this OOB Read as exploitable.

Analysis (1/2)

Analysis (2/2)

Case Study #4 - (MSRC Case
62010) Microsoft Access 2016
Heap Corruption

Summary

An heap corruption (invalid pointer) has been detected when handling a specially crafted Access database.

The following crash was observed in Microsoft Access 2016 and 2019 with Windbg. The vulnerability was

found during fuzzing activity.

No fix for this issue as Microsoft stated user are required to run VBScript.

Analysis (1/2)

Analysis (2/2)

Case Study #5 - Hancom
Word Out-of-Bounds Read
Vulnerability

Summary

An heap out-of-bounds read vulnerability exists in Hancom Word software that is caused when the Office

software improperly handles objects in memory while parsing specially crafted Office files. An attacker who

successfully exploited the vulnerability remotely and could run arbitrary code in the context of the current

user. Failure could lead to denial-of-service. Product and version affected was Hancom Office 2020 with

version 11.0.0.1. The vulnerability was found with fuzzing.

Analysis (1/3)

Analysis (2/3)

Analysis (3/3)

Vulnerability
Disclosure...again...

Disclosure

● Were still seeing debates on vulnerability disclosure

● Painful processes, both party researchers and vendors

● We do see most vendors have vulnerability disclosure process

● Some offered bounty and some don’t, there’s debate on this too

Do’s & Don’ts!

● Provide as much information to ease the

vendors task

● If necessary, use all the mediums to inform

vendors

● Get some feedback from other researchers

on disclosing vulnerability

● Follow the standard vulnerability disclosure

(90 days perhaps?)

● Get CERTs involved

● Avoid public disclosure without notifying

vendors

● Do not talk publicly on what you found not

until it gets fix

Conclusion

● Best defense is offense

● Finding bugs = needle in a haystack

● Proper disclosure with vendors for bugs fixes

● Long live file format fuzzing :)

