Fuzzing: Revisiting

Software Security

NAFIEZ @ ROOTCON 15, 2021

About Me

An independent security practitioner located in Malaysia with passion in
vulnerability research, fuzzing, reverse engineering and exploit
development. | play RC Drift.

Some of my notable works can be found here

- https://zeifan.my

https://zeifan.my

Why [t Still Failed?

Lack of Secure Development Lifecycle
e Ignorance from vendor by trying to avoid fixes

® Security is expensive

e Third party software developer do not follow mitigations built by Microsoft

Security ain’t priority

What Are We Seeing Here?

Microsoft has improved the security in their operating systems by killing and eliminating bug classes
e Exploit mitigations on different aspects, vulnerability become useless

e Finding vulnerability is HARD

e Competitor between researchers, vendors and boutique firm

Exploit development costly

General (1/2)

Started from lowest hanging fruit to the complex part. My previous work on hunting vulnerability in
Antivirus covering various security issue and methods.

e Methods are similar, depending on the target

e Study other researchers write ups and analyzed from scratch to understand how it works. It helps to

identify bugs and ideas on how to exploiting it.

Reverse engineer patches and updates

General (2/2)

Easiest way to hunt for vulnerability is the access to source code.

e However it is impossible to have access to source code when it comes to closed source program.
Heavily involved in reverse engineering.

® Reverse engineering is HARD!

One way to approach is to fuzz. Fuzzing is fun but hard too and may cause disappointment :D

Fuzzing Approach (1/2)

e Rely on traditional method such file format fuzzing
o Byte and Bit mutation FTW!

e Perform variant hunting
o APls, Functions, etc.

e Dumb & Smart Fuzzers

o Custom & Public

Fuzzing Approach (2/2)

Number of CVEs assigned

e Custom fuzzer built to work on specific cases such file format
o Limited to the target itself

® Public fuzzer, we used any available fuzzers such as WinAFL and CERT BFF
® WInAFL supports coverage guided, APIs

CERT BFF only file format, support custom Python plugin

Fuzzing Stats / Results

Bugs Found During Fuzzing

30
20

10

Foxit WPS Office Microsoft Office Windows GDI Hancom Office Nitro PDF

Public Fuzzer (1/2)

WIinAFL and CERT Basic Fuzzing Framework (BFF) are the main options on publicly available fuzzer
e WIinAFL is powerful and smart fuzzer

o Fast (depends on you harness) and it supports instrumentation too
o CERT BFF using traditional methods without coverage guided or instrumentation

o It supports Python plugin and you can write your own fuzzer

o The longer it runs, the slower it become :D
e Found numbers of vulnerability and assigned with CVEs for public record on vulnerability reported
e Next page shows the numbers of issue found

o Not everything included due to some don’t have public advisory from vendors

o | reported numbers of issue however only couple of it has CVEs assigned

Public Fuzzer (2/2)

CVE-2020-10222 - Nitro PDF Software

MSRC Case 58680 - Windows GDI
MSRC Case 58593 - Windows GDI CVE-2020-10223 - Nitro PDF Software

MSRC Case 58745 - Windows GDI CVE-2020-25290 - Nitro PDF Software

CVE-2019-19817 - Nitro PDF Software
MSRC Case 58843 - Windows GDI

CVE-2019-19818 - Nitro PDF Software

CVE-2019-19819 - Nitro PDF Software

* there are more...

Custom Fuzzer (1/5)

File format fuzzing still effective these days, although it slow but we do found numbers of vulnerabilities
e Mainidea is to find bug as much it can

e Heavily focus on C / C++ types of application

e Capable to fuzz complex software

e Able to catch bugs and minimize results

Purely written in Python

Custom Fuzzer (2/5)

e Mutation on input file

e Covering bit flip

e Detecting crashes via debugger, slow but it works :)

o e.g. file.exe input.test

o Randomize range values

o Strings, special characters

o cdb, PyKD or WinAppDBG
Page Heap enabled

Custom Fuzzer (3/5)

o

® |ntegers

Signed and Unsigned byte

Signed and Unsigned word

Signed and Unsigned dword

Signed and Unsigned qword

Negative numbers (ranging from 0x80000000 to Oxffffffff)

Positive numbers (ranging from 0x10000000 to Ox7fffffff)

Custom Fuzzer (4/5)

e Strings and ASCII

o Large string s

o Empty strings

o Length tags modifications
o NULL terminator

Append and prepend on tagged strings

Custom Fuzzer (5/5)

e Detecting crashes could trigger false alarm

e Split out the result by performing a better filtering
o Check last exceptions e.g. address NULL or has something on memory / register
e Importantinfo

o Access violation
[Last crash disassembly code, Register value, Stack trace (sometimes inaccurate)

Manual verification, debugging FTW

Randomize
range
values

Bit
Flipping

ey Detecting
g ey Crashes

What's Inside the Custom Fuzzer?

No special code or techniques, just a “copy cat” code from the Internet with major modification
e Bitflip FTW:)

e No taint or guided features, fully file format fuzzer

e Initial idea is to build a framework, but looks hard LOL

® It caught real vulnerability on complex software such Microsoft Office

Too slow but satisfied with its results XD

Input File

New process
with next file
processed

Bit flip the
input file

Save file that
mutated

\\ Write output

of last state
of the fuzzer

Test Case - Fuzzing Example

Targeting Hancom Word processing application. Vulnerability reported to KISA.
e Corpus size around 25 KB

e Bit Flip mutation
o Covering random range of values starting from 0x0 until Ox7FFFFFFF

e Bug found after 4 hours running, there are three different vulnerability found

Example of fuzzing test case in next page

File Format Fuzzed

o
] =

mw W
<m0

) W 0O

)
B
1)

=)

10
(g B o
=

W o
w

& AF

¢

Original File

Mutated File

4A B4 77 €9 E3 DD 77 2E E2 75 15 91 <!moJuwid¥w.au.’ 00003B20 3C 21 6D €F 4A A4 77 €9 E3 DD 77 2E E2 75 15 91

E4 3R 6E 7B 91 52 E9 FA D2 92 F4 61 =~ Oa:n{'Réud’da 00003B30 98 20 AO 4F E4 3R €E 7B 91 52 E9 FA D2 92 F4 61

25 09 BC 1B 73 11 63 05 8F 22 5C OA .E6<%.w.s.c.."\. 00003B40 19 CB F3 3C 25 09 BC 1B 73 11 63 05 8F 22 5C OA

31 58 5A 2AE DS 56 97 ¢2 CCINENDINPE .>.%1[ze0v—bff. .§ 00003B50 04 3E 04 BE 31 5B 5A AE D5 56 97 62

C6é €3 EA 13 F4 F7 C7 OF 3D 7B FO 89 8.9xEcé.5:C¥=({8% 00003B60 38 06 B6 D7 C6 63 EA 13 F4 F7 C7 9F 3D 78 FO 89

31 10 91 28 A9 17 7C 26 06 9A 37 71 -‘sil.‘(®.|&.37q 00003870 B7 91 73 EF 31 10 91 28 A9 17 7C 26 06 YA 37 71
68 84 9C CA 2E 13 E8 00 B3 B6 07 H.6% k.ef..&.°q. 00003B80 48 OC 36 D8 AF €B 84 9C CA 2E 13 E8 00

When the Word started to process and parse for the contents
will trigger due to malformed contents on the file formatting.

of the DOC file, crash

<!'moJHwid¥w.d&u."
0&:n{ ‘Réwd’ da
Hocki.5.c.."\.
.>. %1 [z00v-b[7Y
2.9xEcé.5=CY¥={8%
-1'sil. ' (®@.]&.87q
H.6Q k,cE..&.39.

Example Minimize Results

00
Null: False

Access violation (first chance) at hwordapp!®x18e2e

Registers:

eax=baadf041 ebx=baadf041 ecx=00000000 edx=00000005 es1=014fcda8 ed1=014fccd0
e1lp=69248e2e esp=014f9bb8 ebp=014f9bc4 1opl=0 no up el pl nz na po cy
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b ef1=00210203

Stack trace:
Frame Oorigin
014F9BC4 BAADF04169D20B9D (0xbaadf04169d20b9d)

Before that...

We need to understand how the mitigations takes place
e Are the targets are really protected with the current mitigations?

e How far can we demonstrate the impact of the bug? Exploitable? Partially exploitable?
Non-exploitable?

Understand your target is very important

State the Art

Finding memory corruption used to be easy with exploitable results
e Historically exploited for decades (we can observe in the wild exploits)
e Attack surface is always there it’s just the matter of the understanding how it works

Heavily involved reverse engineering process

Stack Before
Overflow

Stack After
Overflow

Local Buffer

AAAA

Other Variables

AAAA

Return Pointer

Stack Pivot

Function Params

Function Params

Garbage

Garbage

User Controlled
Data

User Controlled
Data

https://ctf-wiki.github.io/ctf-wiki/pwn/windows/stackoverflow/figure/demo2-1.png

https://ctf-wiki.github.io/ctf-wiki/pwn/windows/stackoverflow/figure/demo2-1.png

Overwrite

0x000000

OXFFFFFFFF

Stack

0Ox61ba8b5e
0Ox7cfc896b

To shellcode

Shellcode

dlil

ADD ECX, 10

POP EDX

0x90909090
RET

dli2

0x60000000 - DLL address space
0x70000000 - DLL address space

Stack Growth

ROP in action - Code Reuse Attack
https://jnet.i.lithium.com/tb/image/serverpage/image-id/18394i1F93FD8C873152B4/image-size/large 2v=1.0&px=999

https://jnet.i.lithium.com/t5/image/serverpage/image-id/18394i1F93FD8C873152B4/image-size/large?v=1.0&px=999

Before CFG After CFG
| xchgeaxespretn

CFG Check

https://www.blackhat.com/docs/asia-17/materials/asia-17-Li-Cross-The-Wall-Bypass-All-Modern-Mitigations-Of-Microsoft-Edge.pdf

Process CPU Private Bytes | Working Set PID Description Company Name Control Flow Guard ~ Stack Protection
Name Description Company Name Path ASLR Control Flow Gu...
MSAIN.DLL Microsoft Access Intemational... Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\Office 16\1033\MSAIN.DLL ASLR

GFX.DLL Microsoft Office Graphics Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\Office 16\GFX.DLL ASLR

IEAWSDC.DLL Microsoft Office component Microsoft Corporation C:\Program Files {(x86)\Microsoft Office \root\Office 16\[EAWSDC.DLL ASLR

IVY.DLL Microsoft lvy Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\Office 16\IVY.DLL ASLR

MSACCESS.EXE Microsoft Access Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\Office 16\MSACCESS.EXE ASLR

MSOARIA.DLL Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\Office 16A\MSOARIA.DLL ASLR

msvep140.dll Microsoft® C Runtime Library ~ Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\Office 16\msvcp140.dll ASLR CFG
OART.DLL Microsoft OfficeArt Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\Office 16\OART.DLL ASLR

veruntime 140 dll Microsoft® C Runtime Library ~ Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\Office 16\vcruntime 140 dll ASLR CFG
MSOINTL.DLL Office Intemational Resources Microsoft Corporation C:\Program Files {x86)\Microsoft Office\root\VFS\ProgramFilesCommonX86\Microsoft Shared\OFFICE16\1033\... ASLR

msoint!30.dll Office Intemational Resources Microsoft Corporation C:\Program Files {x86)\Microsoft Office \root\VFS\ProgramFilesCommonX86\Microsoft Shared\OFFICE16\1033\... ASLR

OFFICE.ODF Microsoft Office culture data dll Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\VFS\ProgramFilesCommonX86\Microsoft Shared\OFFICE16\Culture... ASLR

MSO.DLL Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\MSO.... ASLR
Mso20win32client.dll Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\Ms020... ASLR
Mso30win32client.dll Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\Ms030... ASLR
MSO40UIRES.DLL Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\VFS\ProgramFilesCommonX86\Microsoft Shared\OFFICE16\MSO4... ASLR
Mso40Ulwin32client.... Microsoft Office component Microsoft Corporation C:\Program Files {x86)\Microsoft Office \root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\Mso40... ASLR
Mso50win32client.dll Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\VFS'\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\Mso50... ASLR
Mso98win32client.dll Microsoft Office component Microsoft Corporation C:\Program Files {x86)\Microsoft Office \root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\Ms0S98... ASLR

MSOSSLRES.DLL Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office\root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\MSQOS... ASLR

MSORES.DLL Microsoft Office component Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\VFS\ProgramFilesCommonX86\Microsoft Shared\OFFICE16\MSOR... ASLR

RICHED20.DLL RichEdit Version 8.0 Microsoft Corporation C:\Program Files (x86)\Microsoft Office \root\VFS\ProgramFilesCommon X86\Microsoft Shared\OFFICE16\RICHE... ASLR

alloca_probe proc near ; CODE XREF: pfnWinEventProc+Btp
; sub_1001B968+Btp ...

push ecx
lea ecx, [esp+l
sub ecx, eax
sbb eax, eax
not eax
and ecx, eax
mov eax, esp
and eax, OFFFFFeeeh
csl109: ; CODE XREF: __alloca_probe+29lj
cmp ecx, eax
jb short cs2@
mov eax, ecx
pop ecx
xchg eax, esp
mov eax, [eax]
mov [esp+l], eax
retn
[i1y S S —————
"2 €s520: ; CODE XREF: __allcca_probe+161]

C 32772 sub eax, 1086h

.text:18832777 test [eax], edx

text:10@327 jmp short csl@

https://twitter.com/zeifan/status/1298074650098819072/photo/1

https://twitter.com/zeifan/status/1298074650098819072/photo/1

After...

Finding bugs ain’t easy task nowadays
e Modern exploitation is hard and expensive
® One has to chain multiple bugs to achieve powerful exploitation

Exploit development costs continue growing

Attack Surface

Bugs are exist, the entry point is important to hunt
e Patches and fixes let us understand what have been fix previously and could introduce another bug
e \Variant hunting indeed important however it’s pretty hard without proper guided fuzzing

Input, processing and parsing are the common attack surface

Real World Vulnerabilities

Found numbers of bug on various software
e Inthis talk, I'll present case study on Microsoft Access and Hancom Word Processor

® Microsoft did a great job on fixing and future plan release to eliminate the bugs that reported

e Fun fact about Hancom, | reported vulnerability to KISA however no further updates / news from them

on the reported bug

Summary

The bug was found with my custom fuzzer and Microsoft acknowledge me on their portal along with the
CVE-2020-16957. The idea fuzzing Microsoft Access is by feed the fuzzer with 10MB+ file size

A heap corruption was detected when handling a specially crafted Access database and the bug reproducible
on Windows 10 x64 version 1909. Affected version of Microsoft Access 2016 with version 16.0.13029.20308.

Analysis (1/2)

Analysis (2/2)

1 ebx=0119a0a8 ecx=411le2ac8 edx=0119a0a8 esi=41le2ac8 edi=0119a0a8
d esp=011989a0 ebp=01198b80 iopl=0 nv up el ng nz na pe nc

02b

I

ds=002b
3 -

899d44feffff

00201020
6dd3ab70
771f909b
7714bbad
c 7714b0cf
7714ae8e
68c0b49a
68bd72f1
689de79a
689df55b
689dee3d
689e2a43
689a75b3
72e32299
4 6cb91936

02b fs=0053 gs=002b ef1=00200286

dword ptr [ebp-1BCh],ebx ss:002b:011989c4=006d9cd5

MSACCESS ! IdsComboFi110fActidIarg+0xaf226
verifier!AVrfDebugPageHeapAllocate+0x240
ntdll!Rt1DebugAllocateHeap+0x39
ntdll!Rt1lpAllocateHeap+@xed
ntdll!RtlpAllocateHeapInternal+0x22f
ntdl1!RtlAllocateHeap+0x3e

D3D10Warp
D3D1@warp
D3D10wWarp
D3D1@Warp
D3D1@wWarp
D3D1@warp
D3D10wWarp

WarpPlatform::AllocateAlignedMemory+@xla
GeometryBuffer: :BeginDraw+0x71
AlphaBltExt: :Draw2DInternal+0x1lda
AlphaBltExt: :Draw2DInternal+0x6eb
AlphaBltExt: :Draw2D+0x56d

UMContext: :AlphaBltEx2+0x7a3
WarpPrivateApi+0x643

d3d11!CDevice: :WarpEscape+0xe9
d2d1!CD3DDevicelLevell: :WarpAlphaBlt+0x2d8

Summary

An Out-of-Bounds Read vulnerability has been detected when handling a specially crafted Access database.
The following crash was observed in Microsoft Access 2016 with Windbg. The vulnerability was found during
fuzzing activity.

Microsoft consider this bug as moderate info disclosure meaning no fix and it will only included in the next
product cycle (not the monthly patch)

Analysis (1/2)

0O

(ob8.2fec): Access violation -

code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected
eax= ebx=00c9d840 ecx=
elp=65dd2cfd esp= ad44 ebp=
Ccs= SS= b ds=002b es=
VCRUNTIME140 !memcpy+0x51d:
dd2cfd 5a06 mov

and handled.
edx= esi=lece34d4 edi= aedf

ad64 i1opl= nv up et pl nz na po nc
b fs= gs= efl=

al,byte ptr [esi] ds: b:lece34d4=2?

Summary

An Out-of-Bounds Read vulnerability has been detected when handling a specially crafted Access database.
The following crash was observed in Microsoft Access 2016 with Windbg. The vulnerability was found during
fuzzing activity.

Microsoft does not consider this OOB Read as exploitable.

Analysis (1/2)

o0 0

(32f4.2de4): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.

This exception may be expected
eax=1b0d2001 ebx= ecx=
elp=6df2317e esp=018T0670 ebp=

Ccs= SS= b ds=002b es=
VCRUNTIME140 !memcpy+0x4e:
df2317e f3a4 rep movs byte ptr es:[edi],byte ptr [esi]

and handled.
edx= es1=1b0d2000 edi1=155bbc0®
f06b8 1opl= nv up et pl nz na pe cy
b fs= gs=002b efl=

Analysis (2/2)

KETEXTES
62cf82d0
3 62cdalad
62ce3cad
62ce39b5
62ce3731
62cedbe2
0 62cfOaeb
62cf8703

62cf845e
3 62cf8094
62cf502f
62cf4952
62cf8010

c4 005640e5
3 @0ba2a9%e

} 005622a5
0063c738

155bb981
1b0d1d81
00000e21
018f0778
00000000
13634220
13634220
04000000
10000000
13634220
62e312dc
13634220
13634220
13634220
00000000
130cdeald
130cdeald

1b0d1d81
00000280
154fe990
23fbafof
00000002
153f0c90
000007 ff
018f0aec
15506c38
000000fe
62e31210
1538b348
1538b348
1538b348
130cded0®
01812108
01812108

00000280
018f0778
018f0778
018f0778
0180778
00000001
00000001
00000004
00000000
10000000
00000000
0a0e9d90
0a0e9d90
0a0e9d90
130cdeald
01811494
01811494

VCRUNTIME140 ! memcpy+0x4e

ACECORE+0x382d0
ACECORE+Ox1alad
ACECORE+0x23cad
ACECORE+0x239b5
ACECORE+0x23731
ACECORE+0x206e2
ACECORE+0x30aeb
ACECORE+0x38703
ACECORE+0x3845¢
ACECORE+0x38094
ACECORE+0x3502f
ACECORE+0x34952
ACECORE+0x38010

MSACCESS ! CreateIExprSrv0bj+0x1674
MSACCESS ! OpenHscrEmbedded+0x4f6e8
MSACCESS !AccessLoadString+0x624e

Summary

An heap corruption (invalid pointer) has been detected when handling a specially crafted Access database.
The following crash was observed in Microsoft Access 2016 and 2019 with Windbg. The vulnerability was
found during fuzzing activity.

No fix for this issue as Microsoft stated user are required to run VBScript.

Analysis (1/2)

orte

orted before exception handli
d and handled.
not be fo i Jefe to

N
~~
o
L
N
=
©
C
<

Summary

An heap out-of-bounds read vulnerability exists in Hancom Word software that is caused when the Office
software improperly handles objects in memory while parsing specially crafted Office files. An attacker who
successfully exploited the vulnerability remotely and could run arbitrary code in the context of the current
user. Failure could lead to denial-of-service. Product and version affected was Hancom Office 2020 with
version 11.0.0.1. The vulnerability was found with fuzzing.

M
~
—
.B

Analys

Analysis (2/3)

Stack unwind information not available. Following frames may be wrong.
6aacal78 Oceee2f8 6aacb2eb 0ce7e308 HwordApp!HwordDeletePropertyArray+0xa5eela
6a74a747 00000043 00000043 41e32dfb HwordApp!HwordDeletePropertyArray+0xbofffs

6aa2c2f® 0cc85428 00000001 00000000 HwordApp'HwordDeletePropertyArray+0x7905c7

Analysis (3/3)

Disclosure

Were still seeing debates on vulnerability disclosure
e Painful processes, both party researchers and vendors
e We do see most vendors have vulnerability disclosure process

Some offered bounty and some don’t, there’s debate on this too

Do’'s & Don’ts!

® Provide as much information to ease the
vendors task

e If necessary, use all the mediums to inform
vendors

e Get some feedback from other researchers
on disclosing vulnerability

e Follow the standard vulnerability disclosure

(90 days perhaps?)

Get CERTs involved

Avoid public disclosure without notifying
vendors

Do not talk publicly on what you found not
until it gets fix

Conclusion

Best defense is offense
e Finding bugs = needle in a haystack
® Proper disclosure with vendors for bugs fixes

Long live file format fuzzing :)

