
I'VE INJECTED A DLL - YOU WON'T BELIEVE WHAT
HAPPENED NEXT!

BY

@CAPTNBANANA

https://twitter.com/CaptnBanana

WHO R U MAN
I do red teaming / pentesting
Interested in reversing & exploit development
And: Game hacking
https://bananamafia.dev/

https://bananamafia.dev/

MOTIVATION

MOTIVATION: MONEY
Win at Tournament: $$$
Cheat: Easier $$$?
Cheat subscription

7 Days: 7€
30 Days: 30€
90 Days: 28€

PAID CHEATS
"Humanized Bot"
"We are undetected, we swear!"
"If you attach a debugger we will ban you from the
cheat service"
"We don't log, trust us!"

CHEAT TYPES
Wallhack
Aimbot
Game Specific:

No Flash
Anti Grip
See invisible players
Crosshair hack

HACK TYPES
Internal
External
(Instrumented)

TOOLING
Visual Studio: C++
Debugger, e.g. x64dbg
IDA/Ghidra/Radare2/Cutter/...
Cheat Engine

ABOUT CHEAT ENGINE
It's great
Inspect and analyze process memory
Disassembler
Scripting engine
Windows / Linux
ceserver + GUI (wine)

HANDY CHEAT ENGINE FEATURES
Scan for known values
"What writes/reads" this address
Freeze values

0:00 / 0:59

INTERNAL HACK ON WINDOWS
For Jedi Academy and Counter Strike: GO
Plan:

Build DLL loader
Build actual DLL
Inject DLL
Profit

LOADER CODE

HANDLE procHandle = OpenProcess(

 PROCESS_ALL_ACCESS,

 FALSE,

 PID);

LPVOID loadFunctionAddress = (LPVOID)GetProcAddress(

 GetModuleHandle("kernel32.dll"),

 "LoadLibraryA");

LPVOID allocatedMem = LPVOID(VirtualAllocEx(

 procHandle,

 nullptr,

 MAX_PATH,

 MEM_RESERVE | MEM_COMMIT,

THE INJECTED DLL
BOOL APIENTRY DllMain (HMODULE hModule, DWORD ul_reason_for_ca

 switch (ul_reason_for_call) {

 case DLL_PROCESS_ATTACH:

 MessageBox(0, "Cool, Works!", "1337 DLL", 0);

 break;

 }

 return TRUE;

}

GAME ENGINES
From now: Game and engine specific
What to hook and what to manipulate depends!
Jedi Academy: idTech3 (Quake3) Engine
CS:GO: Source engine

JEDI ACADEMY
WALLHACK, AIMBOT, ANTI GRIP

WALLHACK
cl_cgame.c (Quake3)

int CL_CgameSystemCalls(int *args) {

 switch(args[0]) {

 [...]

 case CG_R_ADDREFENTITYTOSCENE:

 re.AddRefEntityToScene(VMA(1));

 return 0;

 [...]

 }

}

CL_CgameSystemCalls()

Implemented in cgamex86.dll
Called by main executable (jamp.exe)
Needs to be hooked

CALL INTO DLL: PROGRAM FLOW
jamp.exe loads cgamex86.dll
jamp.exe calls GetProcAddress() for desired
function
GetProcAddress() returns address of function inside
of DLL
jamp.exe executes function@Address

PLAN (1)
Hook GetProcAddress() and manipulate
returned function address
-> Execute own code instead
-> Call original function in the end

CGAMEX86.DLL EXPORTS:
DLLENTRY()

Receives function pointer as parameter
Hooked to manipulate existing code (e.g. for
Wallhack)
Events: Entity added, entity moves, game data
received from server

Q_EXPORT void dllEntry(intptr_t (QDECL *syscallptr)(intptr_t

 Q_syscall = syscallptr;

 TranslateSyscalls();

}

PLAN (2)
Hook GetProcAddress()
-> hook dllEntry()
Intercept calls with command
CG_R_ADDREFENTITYTOSCENE

Manipulate entity parameter
Done!

HOOK SETUP:
GetProcAddress()

Redirect into own dllEntry()

Mhook_SetHook(

 (PVOID*)&originalGetProcAddress,

 hookGetProcAddress

);

[...]

FARPROC WINAPI hookGetProcAddress(HMODULE hModule, LPCSTR lpPr

{

 [...]

 if (isSubstr(lpProcName, "dllEntry")) {

 return (PROC)hookDLLEntry;

 }

 return (FARPROC)originalGetProcAddress(hModule, lpProcName

THE WALLHACK
int syscall_hook(int cmd, ...) {

 [...]

 case CG_R_ADDREFENTITYTOSCENE: {

 // get the passed parameter (an entity)

 refEntity_t *ref = (refEntity_t *)arg[0];

 // HAX!!1!

 ref->renderfx |= RF_DEPTHHACK;

 break;

 }

 [...]

 // call the original

AIMBOT
Lock view at enemy
Designated Aim key
Requirements:

Engine Structures: Done via cgame hooks
Get enemy entity via crosshair
Calculate correct angle: World to Screen
Set angle programmatically

REQUIRED STRUCTURES: ENEMY
int crosshairClientNum = client_game->crosshairClientNum;

auto ent = entFromClientNum(crosshairClientNum);

centity_t* entFromClientNum(int clientNum) {

 [...]

 for (int i = 0; i < MAX_GENTITIES; i++) {

 centity_t* cur = pEntities[i];

 if (!cur) { continue; }

 if (cur->playerState->clientNum == clientNum) {

 res = cur;

 break;

 }

 }

}

WORLD TO SCREEN

Picture and Code Source: GuidedHacking

https://guidedhacking.com/threads/world2screen-direct3d-and-opengl-worldtoscreen-functions.8044/#lg=attachment7735&slide=0

WORLD TO SCREEN
bool w2s(float fovx, float fovy, float windowWidth, float wind

{

 v3_t transform;

 float xc = 0, yc = 0;

 float px = 0, py = 0;

 float z = 0;

 px = tan(fovx * M_PI / 360.0);

 py = tan(fovy * M_PI / 360.0);

 transform = this->sub(origin); //this = destination

 xc = windowWidth / 2.0;

 yc = windowHeight / 2.0;

SETTING THE CAMERA ANGLE
void moveMouse(v3_t SCREEN)

{

 [...]

 INPUT Input = {0};

 Input.type = INPUT_MOUSE;

 Input.mi.dwFlags = MOUSEEVENTF_MOVE;

 Input.mi.dx = SCREEN.x - client_game->refdef.width / 2;

 Input.mi.dy = SCREEN.y - client_game->refdef.height / 2;

 SendInput(1, &Input, sizeof(INPUT));

}

NO GRIP

THE PLAN
Get enemy entity
Automatically aim at enemy (Use Aimbot)
Execute force throw -> Cancel grip

NO GRIP
// If we are currently being gripped

if (ps && (ps->fd.forceGripBeingGripped || ps->fd.forceGripCri

 auto ent = entFromClientNum(ps->persistant[PERS_ATTACKER])

 // focus the current target -> use aimbot

 focusEnt(ent);

 syscall_hook(CG_SENDCONSOLECOMMAND, "force_throw;");

}

ANTI TRICK

HOW IT WORKS

Works even though force is disabled on server

// modify local player state

ps.fd.forcePowersActive |= (1 << FP_SEE);

ALLOWING BLOCKED SETTINGS

Makes the game think that cheat settings are OK
Enable e.g. r_fullbright
-> No shadows on the map

syscall_hook(CG_CVAR_SET, "sv_cheats", "1");

CS:GO
CROSSHAIR HACK

DIRECT3D EndScene()
Queues scene for output (~ a frame)
Executed a�er scene creation is completed
Ideal for hooking

HOOKING EndScene()
Create DLL with endSceneHook() function
Important: Accept same parameters as original
Inject DLL that hooks the function
Use same loader as before

HOOK FUNCTION: PROTOTYPE

It's parameterless
But: Implicit this parameter

void APIENTRY endSceneHook(LPDIRECT3DDEVICE9 p_pDevice);

REQUIREMENTS
Get address of EndScene()
Function that performs the actual hooking

DIRECT3D PSEUDO DEVICE
TECHNIQUE

Game restart, memory mapping, library versions,
etc. :

No idea where endScene() actually is
Need reliable way to find it
Possible but not universal

Here comes the Pseudo Device Technique
Credits: GuidedHacking

DIRECT3D PSEUDO DEVICE
TECHNIQUE

Create own D3D device
It contains a vTable with an entry to EndScene()
Copy this function address
Throw the device away
Hook the function at the retrieved address

DIRECT3D SOURCE CODE:
d3d9.h

typedef struct IDirect3DDevice9ExVtbl

{

 [... 41 Elements ...]

 HRESULT (WINAPI *EndScene)(IDirect3DDevice9Ex *This);

 [...]

}

LOL HOW
// see https://guidedhacking.com/threads/get-direct3d9-and-dir

bool d3dHelper::getD3D9Device() {

 IDirect3D9* d3dSys = Direct3DCreate9(D3D_SDK_VERSION);

 IDirect3DDevice9* dummyDev = NULL;

 // Options to create dummy device

 D3DPRESENT_PARAMETERS d3dpp = {};

 d3dpp.Windowed = false;

 d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

 d3dpp.hDeviceWindow = hwnd;

 HRESULT dummyDeviceCreated = d3dSys->CreateDevice(D3DADAPT

 // Copy memory to our own data structure

THAT WAS EASY
char* ogEndSceneAddress = d3dHelper.d3d9DeviceTable[42];

WHAT'S MISSING?
We now know what to hook
We know how endSceneHook() has to be
implemented
How to actually hook?

TRAMPOLINE HOOKS

TRAMPOLINE HOOKS: OVERVIEW

TRAMPOLINE HOOKS: CODE
// adapted from https://guidedhacking.com/threads/simple-x86-c

const char* REL_JMP = "\xE9";

const unsigned int SIZE_OF_REL_JMP = 5;

void* WINAPI hookFn(char* hookedFn, char* hookFn, int copyByte

 // Backup original

 ReadProcessMemory(GetCurrentProcess(), hookedFn, backupByt

 // Trampoline setup

 char* trampoline = (char*)VirtualAlloc(0, copyBytesSize +

 PAGE_EXECUTE_READWRITE);

 memcpy(trampoline, hookedFn, copyBytesSize);

TRAMPOLINE HOOKS: ASM VIEW

; Original EndScene()

0x5F8F46A0 6A 14 push 14 ; Prologue

0x5F8F46A2 B8 2E01915F mov eax,d3d9.5F91012E ; Prologue

0x5F8F46A7 E8 3E8B0100 call d3d9.__EH_prolog3_catch ; Actual c

;[more code]

; Hooked EndScene():

0x5F8F46A0 E9 XXXXXXXX jmp dll.EndSceneHook ; Jump to Own Code

0x5F8F46A5 91 ??? ; Trash, never executed

0x5F8F46A6 5F ??? ; Trash, never executed

0x5F8F46A7 E8 3E8B0100 call d3d9.__EH_prolog3_catch ; Actual c

;[more code]

; The Trampoline()

EndSceneHook()

IMPLEMENTATION
// the returned trampoline

extern endSceneFunc trampEndScene;

void APIENTRY d3dHelper::endSceneHook(LPDIRECT3DDEVICE9 p_pDev

 [...]

 // Do own stuff

 drawRectangle(25, 25, 100, 100, D3DCOLOR_ARGB(255, 255, 25

 // Call original function using the trampoline

 trampEndScene(d3dDevice);

}

COMPILING
Add DirectX SDK to linker libraries
Compile DLL for x86

DEBUGGING WITH SYMBOLS

CS:GO
EXTERNAL CHEAT

HOW IT WORKS
Read and analyze game memory
Manipulate memory accordingly
Works without code injection

WHAT CAN BE IMPLEMENTED?
Aimbot
No Flash
Auto-Bunnyhop
Probably more

MEMORY ANALYSIS
Attach CheatEngine
Scan for known values
Reverse structures

MEMORY ANALYSIS
Use leaked game source code
Refer to existing cheat source code

STATIC POINTERS

HAZE DUMPER

UPDATES
Game update -> Cheat update
Different offsets, addresses, struct members

IMPLEMENTING CHEATS: NO
FLASH

Write 0 to member of LocalPlayer
It's that easy

I NEED MORE INFORMATION!
Check out my talk from BSides Munich 2020!

GAME HACKING WITH
FRIDA

HOW IT WORKS
Inject JS code into black box process
Hook, trace

function kick(count = 1) {

 while (count-- > 0) {

 input.SimulateKeyPress(Mappable.id.Character.Attack);

 Thread.sleep(0.5);

 }

}

[...]

// Move in current direction.

step();

// Did we find the object?

if (myPos.distanceTo(object) <= 1) {

CHEAT DETECTION

VAC DETECTION

Uses signatures (among other things)
Detects specific kinds of hooks
Solution: Hook mid function
Don't use public code
Manual Mapping, Polymorphism, Unhooking
But: Kernel mode anti cheats exist

"VAC is a Joke"

https://guidedhacking.com/threads/how-to-bypass-vac-valve-anti-cheat-info.8125/

MANUAL MAPPING?
A fancier DLL injector
Bypass:
LoadLibrary() Hooks

CreateToolhelp32Snapshot()

EnumModules()

NtQueryVirtualMemory()

DLL doesn't show up in loaded modules
Also not in Process Environment Block (PEB)

MANUAL MAPPING
Re-Implement LoadLibrary()
-> Kernel doesn't know a DLL is loaded :)

MANUAL MAPPING: HOW IT
WORKS

Load raw DLL into own memory
Map DLL sections in game process
Inject and run loader shellcode in game process

Relocate
Fix imports
TLS callbacks
Call DllMain()

Cleanup: Free memory

MANUAL MAPPING:
RELOCATIONS

Required if allocated space != ImageBase of DLL
DLL includes relocation information
For global variables, addresses for CALL instructions
Relocate: Adjust addresses based on new base
address

MANUAL MAPPING: IMPORTS
Injected DLL may require additional functions of
other DLLs
Fixing imports:

Loading these DLLs
Setting pointers to imported functions in DLL
header

MANUAL MAPPING: TLS
CALLBACKS

TLS = Thread Local Storage
Executed before DLL entry point
TLS Table in DLL header
Executing TLS Callbacks -> Initialize per-thread data

❤

@CaptnBanana

https://twitter.com/CaptnBanana

REFERENCES
My Blog Posts
Source Code: CS:GO EndScene Hook
d3d9.h Source Code
Simpsons Hit and Run Frida API
GuidedHacking: World to Screen Functions
GuidedHacking: Manual Mapping
Rohitab: Manual Mapping
TLS Section
Slides for my Talk @ BSides Munich

https://bananamafia.dev/tags/gamehacking/
https://github.com/ps1337/endscene-hook
https://chromium.googlesource.com/chromiumos/third_party/mesa/+/refs/heads/factory-samus-6658.B/include/D3D9/d3d9.h
https://github.com/taviso/sharapi
https://guidedhacking.com/threads/world2screen-direct3d-and-opengl-worldtoscreen-functions.8044/
https://www.youtube.com/watch?v=qzZTXcBu3cE
http://www.rohitab.com/discuss/topic/40761-manual-dll-injection/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#the-tls-section
https://github.com/ps1337/awesome-talks/tree/master/bsides-munich-2020

