
Discover vulnerabilities with CodeQL

Security Researcher @ CyCraft

CHROOT’s member

Programming lover 🤓

qazbnm456

@boik_su

Boik Su

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
3

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
4

Brief introduction to CodeQL
CodeQL’s variant analysis and powerful analyzers

5

How Semmle QL works
Analysis Overview

The Query Structure
• CodeQL’s syntax is very similar to SQL, and is comprised of these main parts

• Imports – At the beginning of the query we denote which CodeQL libraries we
wish to import

• from – Variables that will hold interested values for calculations, e.g., Function,
FunctionCall, VariableAccess, Variable and Expression

• where – Once we’ve defined CodeQL variables, we can then construct the
predicates to be applied to them. Although this part is optional, it is also the
core of the query

• select – Under this clause, we set how the output is going to look. We can bind
CodeQL variables and present them in different ways, usually in a table

Analyses
• CodeQL ships with extensive libraries to empower variant analysis

• Static Analysis

• Data Flow Analysis

• Taint Analysis

• CFG Analysis

• Supported languages include C/C++, C#, Java, JavaScript, Python and
more

8

Static Analysis

• Find static things among the Snapshot Database

• Fast and accurate to find flaws that don’t require complex requirements to
meet

• Hardcoded password strings, dangerous functions, etc

Static Analysis
• from Method m where m.getName() = "Execute" select m

• from VariableAccess va

where va.getTarget().getName().regexpMatch(“.*pass(wd|word|code).*”)

select va.getTarget()

Static Analysis

Data Flow Analysis

• DataFlow node carries a single value due to the value-preserving flow

• Find out how things flow back and forth among data nodes

• Baby steps to discovering intriguing paths

Data Flow Analysis
• from AspNetRemoteFlowSource remote, Method m, MethodCall mc

where m.getDeclaringType().getABaseType().hasQualifiedName("System.Web.IHttpHandler") and

m.isSourceDeclaration() and

DataFlow::localFlow(remote, DataFlow::exprNode(mc.getAnArgument())) and

mc.getEnclosingCallable() = m

select m, mc

Taint Analysis

• DataFlow node carries a single value due to the value-preserving flow

• Taint tracking extends data flow by including non-value-preserving flow
steps

• For example,

• If x is a tainted string then y is also tainted

Taint Analysis
• class MyTaint extends TaintTracking::Configuration {

MyTaint() { this = "…" }

override predicate isSource(DataFlow::Node source) { … }

override predicate isSink(DataFlow::Node sink) { … }

}

from MyTaint taint, DataFlow::Node source, DataFlow::Node sink

where taint.hasFlow(source, sink)

select source, “Dataflow to $@.”, sink, sink.getNode()

CFG Analysis

• A different program representation in terms of intraprocedural control flow
graphs (CFGs)

• Phrased in terms of basic blocks rather than single control flow nodes

• I don’t see it being used often

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
17

Replicate CVEs to find you CVEs
Model threats to find them somewhere else

18

Why would we do this?

• It’s because that some vulnerabilities were fixed by just mitigating
reporters’ provided cases

• By replicating these vulnerabilities by modeling with CodeQL, it’s possibly
to find the same flaws through other paths

• It’s also possible to find the same flaws from other projects or repositories

• This is called “Variant Analysis”, the process of using a known vulnerability
as a seed to find similar problems in other code bases

Keybase hostname-validation regular expression

• Look at these two regular expressions

• '\.twitter\.com/([\\w]+)[/]?$'

• '\.twitter\.com/[\\w]+[/]?$'

Keybase hostname-validation regular expression

• Look at these two regular expressions

• '\.twitter\.com/([\\w]+)[/]?$'

• '\.twitter\.com/[\\w]+[/]?$'

• The issue stems from the fact that it use \. instead of \\. in these two
regular expression

Keybase hostname-validation regular expression

Let’s model this flaw

• from InvokeExpr c

where c.getCalleeName() = "RegExp"

select c

Step 1: Find all occurrence

• from InvokeExpr c, StringLiteral s

where c.getCalleeName() = "RegExp" and

 s.getStringValue().matches(“%.*%") and

 s.getEnclosingStmt() = c.getEnclosingStmt()

select c

Step 2: Find all occurrence with ".*" inside

Electron 1.2.2 - 4.2.12
Regular expression failure upon checking a website’s URL to activate the

webExtension

The Patch
Escape correctly all special characters

Umbraco CMS Local File Inclusion

• The ClientDependency package, used by Umbraco, exposes the
"DependencyHandler.axd" file in the root of the website

• This file is used to combine and minify CSS and JavaScript files, which
are supplied in a base64 encoded string

• /DependencyHandler.axd?
s=L3VtYnJhY28vbGliL2pxdWVyeS9qcXVlcnkubWluLmpz&t=Css&cdv=1

• /umbraco/lib/jquery/jquery.min.js

Umbraco CMS Local File Inclusion

Umbraco CMS Local File Inclusion

• According to Umbraco Security Advisories, there are multiple times of LFI
in ClientDependency

• It’s a good target for Variant

Analysis

• Umbraco Forms seems to be a

good target next

https://umbraco.com/about-us/trust-center/security-and-umbraco/how-to-get-informed-about-security-advisories/history-of-umbraco-security-advisories/

Umbraco CMS Local File Inclusion
GET /DependencyHandler.axd

?s=http://umbraco.example.com/web.config&t=Css&cdv=1

Let’s model this flaw

• In Asp.Net, it’s common to implement the IHttpHandler interface in order
to intercept users’ requests

• Therefore, those classes are good sources for us!

• After reviewing the source code of ClientDependency, we know that the
WriteFileToStream function is responsible for the vulnerability

• Hence, this function is good sink

Let’s model this flaw
• Model two previous flaws with CodeQL

• Then, pop up a new LFI issue within ClientDependency 1.8.2.1 - 1.9.8

Let’s model this flaw
• Model two previous flaws with CodeQL

• Then, pop up a new LFI issue within ClientDependency 1.8.2.1 - 1.9.8

• Source Node

Let’s model this flaw
• Model two previous flaws with CodeQL

• Then, pop up a new LFI issue within

ClientDependency 1.8.2.1 - 1.9.8

• Sink Node

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
34

More powerful pattern finder
Find something through semantics

35

Pattern Finder

• Method 1: Grep / Strings / Regular Expression

• Method 2: UML Class Diagram

• Method 3: CodeQL

36

Grep / Strings / Regular Expression

• Pros

• Fast, efficient and intuitive

• Better to locate certain objects

• Cons

• Subject to non-relevant items having similar names

• Hard to track back to the origins

UML Class Diagram
• Pros

• Fast, efficient and intuitive

• Relational mappings

• Cons

• Performance degrades when code is complicated

• Meanwhile, it becomes increasingly difficult to keep track of all these
relationships

UML Class Diagram
• CVE-2018-1000861

• RCE exists in the Stapler web framework used by Jenkins

• Stapler staplers most objects to URLs

• Use UML to find a good gadget to jump into the RCE chain

UML Class Diagram
• CVE-2018-1000861

• RCE exists in the Stapler web framework used by Jenkins

• Stapler staplers most objects to URLs

• Use UML to find a good gadget to jump into the RCE chain

CodeQL
• Pros

• Cover even more general and tricky cases

• Easy to maintain and good to be sustainable

• Cons

• Need professionals to enact patterns

• Takes time to process and compute

Umbraco CMS Local File Inclusion
• CVE-2020-XXXX

• Pre-Auth RCE if we can leak the machineKey

• UmbracoEnsuredPage class is to initiate a pre-auth
check of a user before the page is accessed

• How do we find an easy-to-use breach to get RCE

Unauthenticated Accessible Page
The Umbraco Pages that you can access directly w/o authentication

Umbraco CMS Local File Inclusion
• CVE-2020-XXXX

• Pre-Auth RCE if we can leak machineKey

• UmbracoEnsuredPage class is to initiate a pre-auth
check of a user before the page is accessed

• How do we find an easy-to-use breach to get RCE

• /umbraco/ping.aspx seems to be a good target

Source: https://society6.com/product/dabbing-with-demons_stretched-canvas?sku=s6-16596950p16a6v28

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
46

Regression Tests
SSDLC adoption

47

What’s SSDLC

• SSDLC, aka S-SDLC, is the initialism of Secure Software Development
Life Cycle

• Simply put, add security activities to the system development lifecycle.
Preferably in every phase of the SDLC, and formalized

• Part of DevSecOps

How to use CodeQL as Tests

• Define common pitfalls with CodeQL by professionals

• Hardcoded Strings, OOB access, etc

• Public research and paper of Variant Analysis using CodeQL

• Since it’s community-driven, lgtm has already provided a bunch of rules

• It also provides rules specifically for security

https://lgtm.com/
https://lgtm.com/search?q=tag:security&t=rules

Client-side URL redirect
Client-side URL redirection based on unvalidated user input may cause

redirection to malicious web sites

Untrusted XML is read insecurely
Untrusted XML is read with an insecure resolver and DTD processing enabled

Bean Stalking: Growing Java beans into RCE
Variant Analysis journey that started analyzing CVE-2018-16621 and ended up

opening a can of worms by @pwntester

https://securitylab.github.com/research/bean-validation-RCE/
https://twitter.com/pwntester

Make Memcpy Safe Again: CodeQL
Variant Analysis journey that end up finding 7 new vulnerabilities in FFmpeg

https://www.cyberark.com/resources/threat-research-blog/make-memcpy-safe-again-codeql

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
54

ClientDependency Massacre
Impacting Umbraco CMS since 2015

forums.asp.net

Umbraco Websites
https://afternoontea.co.uk/

https://www.dominos.is/

https://www.kempinski.com/

https://www.newday.co.uk/

https://www.provident.bank/

https://www.hellohay.co/

…

https://afternoontea.co.uk/
https://www.dominos.is/
https://www.kempinski.com/
https://www.newday.co.uk/
https://www.provident.bank/
https://www.hellohay.co/

(Recap) Umbraco CMS Local File Inclusion

• CVE-2020-XXXX

• Pre-Auth RCE if we can leak machineKey

• UmbracoEnsuredPage class is to initiate a pre-auth
check of a user before the page is accessed

• How do we find an easy-to-use breach to get RCE

• /umbraco/ping.aspx seems to be a good target

Source: https://society6.com/product/dabbing-with-demons_stretched-canvas?sku=s6-16596950p16a6v28

Turn LFI into RCE
• In ASP.NET, machineKey is the golden key to the following components

• ViewState

• Forms Authentication

• Out-Of-Process Session

• machineKey will be generated uniquely and automatically

• Developers can also specify their ones to support web farms

Turn LFI into RCE
• In ASP.NET, machineKey is the golden key to the following components

• ViewState

• Forms Authentication

• Out-Of-Process Session

• machineKey will be generated uniquely and automatically

• Developers can also specify their ones to support web farms

Demystify the ViewState

Demystify the ViewState
• ASP.NET uses machineKey to decrypt and validate the __VIEWSTATE or

forms authentication and so on

• Before ASP.NET 4.5, ViewState is considered to be insecure and defaults
to be unencrypted. It means that anyone can see the plaintext by
inspecting the __VIEWSTATE hidden fields

• ViewState gets encrypted by default after ASP.NET 4.5 and even MACed
for good after ASP.NET 4.5.2

• Then, to achieve RCE, we take the leaked key to craft a malign serialized
object that meets the requirements of both encryption and validation

Umbraco CMS Local File Inclusion
• CVE-2020-XXXX

• Pre-Auth RCE if we can leak machineKey

• UmbracoEnsuredPage class is to initiate a pre-auth
check of a user before the page is accessed

• How do we find an easy-to-use breach to get RCE

• /umbraco/ping.aspx seems to be a good target

Umbraco 7

Agenda
• Brief introduction to CodeQL

• CodeQL’s Tricks

• Replicate CVEs to find you CVEs

• More powerful pattern finder

• Regression Tests

• ClientDependency Massacre

• Conclusion
64

The future of CodeQL
• Community-driven set of rules for both linting and security checking

• With more languages get supported, CodeQL can cover wider range of
libraries and codebases

• CVE could be generalized and Repeatable

Thank you ☺

Question?
boik.su@cycarrier.com

mailto:boik.su@cycarrier.com

