
ROOTCON Recovery Mode
Oct 10, 2020 16:45-17:30(GMT+8)

"A (deeper) diving into 
/bin/sh311c0d3.."

(shellcode advanced analysis for DFIR & professionals)

@unixfreaxjp
Cyber Emergency Center - LAC / LACERT

Analysis research material of malwaremustdie.org project 



2

I found that security 
and my sport is 
parallel and a nice 
metaphor to each 
other,

..so I will present this 
talk with sharing 
several wisdom I 
learned in my practise.

About me  My weekly sport (for 30+ years now).



1. Just another security folk on daily basis
- Malware incident senior analyst at  Forensics Group in Cyber 

Emergency Center of LAC/LACERT, Tokyo, Japan. (lac.co.jp),
My specialty on RE is multi-platform cases.

- Blog writer & co-founder of MalwareMustDie.org (MMD), est:2012
2. The community give-back efforts:

- Linux threat / malware awareness sharing in MMD media.
- Lecturer on national events: All Japan Security Camp, ICSCoE CISO 

trainings, DFIR & RE related workshops, etc.
- Supporting open source security tools like: radare2, Tsurugi DFIR 

Linux OS & MISP (IoC posts & ICS taxonomy design), and in 
VirusTotal community for the ELF malware support.

3. Other activities:
- FIRST.ORG’s as IR activist at team LACERT, curator at CTI SIG, 

and Program Committee member, Hackathon participants, etc
3



4

What we are doing in the day work..

We support business continuity 24 hours a day, 
365 days a year by providing emergency response 
services to our customers for any security related 
incidents using our deep forensic knowledge and 
network security expertise.



What I am doing after day work..

5

me & other blueteamers

Red Zone

Blue Zone



Balance between: Achievements, Sharing, Education and Regeneration 6

Our share-back cycle to raise Linux awareness



..in a simple words

7



8

PoC of what we've done for the community..

Just Google:
“MalwareMustDie”



9

PoC of what we've done for the community..

Lecture & Talks contribution (condensed):

● 2012、2013 DEFCON Japan Speaker
● 2013、2014、2015: BOTCONF Program Committee & Speaker + BRUCON
● 2016、2017、2018、2019：AVTOKYO Workshops  on Security Frameworks:

Linux malware analysis, Radare2, Tsurugi Linux, MISP for ICS & VirusTotal 
● 2017、2018、2019: All Japan Security Camp (Instructure)
● 2017、2018、2019: IPA ICSCoE CISO Global training (now:Cyber CREST)
● 2018-2020: FIRST.ORG’s CTI SIG as Curator & Program Committee
● 2018 R2CON Unpackable Linux Binary Unpacking
● 2018 Hackers Paty Japan: The threat of IOT botnet this year
● 2018、2019 SECCON Workshops on DFIR & Binary Analysis (Instructure)
● 2019 HACK.LU Fileless infection & Linux Process Injection Speaker
● 2019 Proposal Initiator of MISP ICSTaxonomy）
● 2019 IotSecJP Introducing Shell Analysis on IOT and ICS devices
● 2020 R2CON Shellcode Basic (Speaker)

etc..



      Chapters

10

“A (deeper) diving into 
/bin/sh311c0d3..”

rootcon2020

1. Introduction
2. Advance shellcode tricks on code 

injection
○ Memory map shellcode stub
○ Cloning shellcode stub
○ Using ESIL to deobfs asm
○ “Moar” tricks reference

3. Shellcode in memory forensics
○ Hot forensics vs Regen
○ Seek the artifacts on radare2

4. Tools for linux shellcode analysis
○ Radare2, gdb, Ghidra, IDA
○ Binutils (objdump, etc)
○ Cross-platform setup

5. Conclusion & reference
○ Conclusion in Q & A
○ Shellcode checklist
○ Shellcode in DFIR perspective
○ My playbook sharing for shellcode
○ Reference



Chapter one  Introduction

11

“Now let’s learn about how to make a stand..”



What this talk is all about (disclaimer)

1. I wrote this slide as a blue-teamer based on my know-how & 
experience in handling incidents on cyber intrusion involving 
shellcodes, as a share-back knowledge to fellow blue team folks in 
dealing with the subject on the rootcon.

2. The talk is meant to be a non-operational and non-attributive material, it 
is written to be as conceptual as possible; it contains basic methods for 
shellcode analysis in the shell platform.

3. The material is based on strictly cyber threat research we have 
conducted in MalwareMustDie organization, and there is no data nor 
information from speaker’s profession or from other groups included in 
any of these slides.

12



Why Linux - why shellcode

1. Linux, now,  is one of most influence OS that is so close to our lifeline.
2. Linux devices are everywhere, in the clouds, houses, offices, in vehicles. 

In the ground, in the air in in outer space. 
Linux is free and is an open source, and that is good.  This is just its a 
flip side of this OS popularity..

3. Linux executable scheme are so varied in supporting many execution 
scenarios & when something bad happens the executable’s detection 
ratio is not as good as Windows.

4. Linux operated devices, if taken over, can act as many adversaries 
scenarios: payload deliverable hosts, spy proxy, attack cushions, 
backdoor, attack C2, etc..

5. {Post} Exploitation tools/frameworks attacks Linux platform too, 
shellcodes is having important roles.

13



About this talk & its sequels

1. I have planned a roadmap to share practical know-how on binary 
analysis in a series of talks, and executed them in a sequel events:

2. This year is the final part of shellcode talk sequels (in yellow), 
it’s focusing on advance research, related to previous talks (in blue) 14

Year Event Theme Description

2018 R2CON Unpacking a 
non-unpackable

ELF custom packed binary dissection r2

2019 HACKLU Fileless Malware and 
Linux Process Injection

Post exploitation today on Linux systems

2019 SECCON Decompiling in NIX shells Forensics & binary analysis w/shell tools

2020
(Spt)

R2CON Okay, so you don’t like 
shellcode too?

Shellcode (part1 / beginner)
For radare2 users

2020
(Oct)

ROOTCON A (deeper) diving into 
/bin/sh311c0d3..

Shellcode (part2 / advanced)
Multiple tools used for vulnerability & 
exploit analysis 



What we don’t 
discuss in this 
slide..

15

1. Basic of Shellcodes

See:

“Okay, so you don’t like 
Sh3llc0d3 too?”

r2con2020

1. Introduction
2. What, why, how is shellcode works

○ Methodology & Concept
○ Supporting knowledge

3. Shellcode and its analysis
○ The way it is built matters!
○ Analysis concept (static/dynamic), 

Supporting environment
4. Analysis techniques in radare2

○ Why static, how
○ r2 on sc dynamic analysis
○ X-Nix vs Windows sc on r2

5. A concept in defending our boxes
○ Forensics perspective
○ IR and handling management 
○ Special cases

6. Appendix
○ Glossary
○ References



16

1. Background 
2. Post exploitation in Linux 

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless  method,

4. Components to make all of these 
possible
○ Frameworks: concept, specifics, 

examples
○ Components: Shellcodes, 

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management 

model
6. Appendix

What we don’t 
discuss in this 
slide..

2. Process injection in 
Linux

See:

“Fileless malware & process 
injection in Linux”

hacklu2019



Slides references:

17



Talk video references:

18



Where to start?

“..Start from the skillset that 
you’re good at.”

19



Chapter two  Advance shellcode tricks 

20

“First, free your mind..”



Chapter two  Advance shellcode tricks

21

In the previous talks I explained about proces injection to insert and 
execute shellcode. Beforehand, again, WHAT IS CODE INJECTION?



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

22

ptrace() is useful to gain control for code injection state. Shellcode is the 
mostly used codes (hex) to inject, instead of ELF binary or SO library.

The most common usual techniques for shellcode injection via ptrace() 
is as follows:

PTRACE_PEEKTEXT to backup predefined memory address

PTRACE_GETREGS to backup ptrace() used registers

PTRACE_POKETEXT to overwrite mmap2 shellcode w/ 0xcc

PTRACE_SETREGS to start exec from overwritten address

PTRACE_CONT to code execution

Execute wait() to gain control back, by sending/receiving int3

PTRACE_GETREGS to store back to new allocated memory



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

23

ptrace() is useful to gain control for code injection state. Shellcode is the 
mostly used codes (hex) to inject, instead of ELF binary or SO library.

One most common usual technique for shellcode injection via ptrace() 
is as follows:

PTRACE_PEEKTEXT to backup predefined memory address

PTRACE_GETREGS to backup ptrace() used registers

PTRACE_POKETEXT to overwrite mmap2 shellcode w/ 0xcc

PTRACE_SETREGS to start exec from overwritten address

PTRACE_CONT to code execution

Execute wait() to gain control back, by sending/receiving int3

PTRACE_GETREGS to store back to new allocated memory



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

24

In one incident we spotted this shellcode stored in the memory in 
x86_64 servers as a part of bigger shellcode stub.  What is this code 
for?



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

25

It’s spotted in the running bogus process as one stub of other shellcode:



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

26

First step: REGEN. Put this back to a common wrapper for further analysis:

Try to compile it with:



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

27

The purpose is to dynamically analyze the shellcode in any debugger: 



Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection

28

To trace the register to figure it out how it works:



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

29

These are the steps of how it works:
● The shellcode-stub was invoking linux syscall mmap2() to allocate a 

memory space with :
○ 1,000 bytes size
○ The allocated memory area is flagged as PRIVATE & 

ANONYMOUS, meaning:  an independent space/process is 
created that can be used to execute any malicious code or to 
store any data.

○ The permission of the allocated memory area is on READ 
WRITE & EXECUTION permission, to support any kind of code 
execution or injection.

● mmap2(2) man page:
“On success, mmap2() returns a pointer to the mapped area”



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

30

These are the steps of how it works:
● The shellcode-stub was invoking linux syscall mmap2() to allocate a 

memory space with :
○ 1,000 bytes size
○ The allocated memory area is flagged as PRIVATE & 

ANONYMOUS, meaning:  an independent space/process is 
created that can be used to execute any malicious code or to 
store any data.

○ The permission of the allocated memory area is on READ 
WRITE & EXECUTION permission, to support any kind of code 
execution or injection.

● mmap2(2) man page:
“On success, mmap2() returns a pointer to the mapped area”

Elaborating mmap return pointer to the 
payload shellcode is enabling the 
execution of code under 1000 bytes

The decision to use mmap is because is 
the only way to get executable pages
with write permissions in memory even 
with SELinux enabled.

This small shellcode is a preparation for 
next payload to be injected & execution.



What do we learn from this case?

31

OSINT is on!



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

32

It seems a red teamer’s Github tool was used/abused to aim victims of 
the mentioned incident:



Chapter two  Advance shellcode tricks
> Memory map shellcode stub for injection

33

POC:



Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection

34

[Another Research of the same vector]
The good improvement of this shellcode-stub mmap in C:

This code is named / known back then as MMAP TRAMPOLINE 
(pancake, phrack Volume 0x0d, Issue 0x42)



35

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub

1. Shellcode clone-stub is used as a stager loader to execute the real 
shellcode payload after the forking command is successfully executed.

2. Normally it will clone-stub shellcode will return to its parent, but in 
several incidents it was detected the clone-stub is killing the parent 
process (the shellcode loader/injector) )when the forking is failed.

3. The alleged purpose for the clone-stub is for stealth code injection. 
Leaving the victim’s blind on how the payload-shellcode has been 
injected.

4. The rest of the payload shellcode can be anything from a reverse shell, 
bindshell ,etc for further intrusion.



36

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub

This is how it looks like in the real incidents we recorded:



37

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub

Real payload

Clone_stub



38

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



39

Based on the reversed 
assembly the clone-stub loader 
for payload can be recoded w/ 
something similar like this…

It seems the SIGUSR2 is 
hardcoded under specific 
purpose to kill the parent 
program (the injector binary).

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



40

Chapter two  Shellcode from MOAR code injection
> The case of shellcode clone-stub

The REGEN of the shellcode from 
injector binary found in forensics 
process...



41

The clone-stub and payload shellcode in memory
work-space of the injected process (opcode search result)

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



42

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub

The clone 
stub loader 
and its real 
payload 
shellcode in 
memory in 
debugging



43

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub

The clone 
stub loader 
and its real 
payload 
shellcode in 
memory in 
debugging

Clone-stub stager shellcode is a payload that’s 
used as a loader to execute the real shellcode 
payload that can camouflage the way it is injected.

It can be using a decoy binary (or a real inject-able 
process) to plant payload shellcode injection.

The forking is used to clone, after forked pid() is 
aimed for the payload injection, while parent 
process will ppid() will be killed (or etc action), and 
injector used will be exited after forming injection 
to decoy binary.



What do we learn from this case?

44

OSINT is on!



45

Another red teamer’s Github tool was used/abused to aim victims of the 
mentioned incident:

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



46

POC:

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



47

POC:

Chapter two  Advance shellcode tricks
> The case of shellcode clone-stub



48

In another case we found this interesting execution of shellcode:

*) ESIL = Radare’s ESIL (Evaluable Strings Intermediate Language), 
ESIL can also be viewed as a VM (virtual machine) to emulate 
assembly code with its own stack, registers and instruction set to 
support static analysis.

Chapter two  Advance shellcode tricks
> Analysis of obfuscated asm shellcode with ESIL



49

Analysis started by REGEN process:

Chapter two Advance shellcode tricks
> Analysis simple obfuscated asm shellcode with ESIL



Chapter two Advance shellcode tricks
> Analysis simple obfuscated asm with ESIL

50

Analysis started by REGEN process (static analysis, non-executable):



51

< DEMO>

Chapter two  Advance shellcode tricks
> Analysis simple obfuscated asm shellcode with ESIL



Several COMBO “cool” shellcode injection methods you should check:

52

Chapter two  Advance shellcode tricks
> “Moar” tricks reference



53

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

Linux-inject : "state of injection" is set by ptrace functions and 
injection is done by __libc_dlopen_mode()  method via 
InjectSharedLibrary(); dissecting by disassembler:



54

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

InjectSharedLibrary() in Linux-inject looks like this:



55

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

Linux-inject : while dissected by radare2’s  R2Ghidra decompiler:



56

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

Linux-inject : while dissected by radare2’s  R2Ghidra decompiler:

After state of injection is enumerated via ptrace(), 
instead using PEEKTEXT/POKETEXT trick, the 
“Linux inject” framework is loading library 
InjectSharedLibrary to use  __libc_dlopen_mode() 
function to perform its shellcode injection, and gain 
control back to the flow by using ptrace() again.
Meaning: victims or “EDR” will NOT see violation in 
injection but a legit library loading process execution.



57

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

Injector without libc (w/ PIE),  bypassing ALSR,
supports multiple inject objects..



58

Chapter two  Advance shellcode tricks
> “Moar” tricks reference

Injector without libc (w/ PIE),  bypassing ALSR,
supports multiple inject objects..

Mandibule is the shellcode injector designed for 
victim’s difficult to figure how shellcode payload 
gets executed in the memory, by pivoting 2 injection 
& avoiding ALSR by omitting glib library.

The injector is injected Mandibule program to the
memory w/ ptrace() before Mandibule will inject the 
code to a certain targeted address, then injector will 
exit & Mandibule also will be vanished after 
injection. A bad news

See my HACK.LU 2019 slide for very detail analysis.



Chapter three  Shellcode in memory analysis

59

“What happen if your guard is down...”



In pre-analysis for shellcode injection cyber incident cases, these are 
the most asked tough questions:

1. Why people don’t tend to do Hot Forensics?
2. Can REGEN/RePro process result be trusted on fileless cases?
3. What is the merit and demerit on Hot Forensics vs 

Regen/Re-production for shellcode incident cases?
4. Do we have to depend on other perimeter logs also (networking, 

IDS/IPS, EDR etc)?

60

Chapter three  Shellcode in memory analysis
> Hot Forensics vs Re-generate/Re-production



61

Chapter three  Shellcode in memory analysis
> Hot Forensics vs Re-generate/Re-production

Hot Forensics ReGEN/RePRo

Do-able? Not easy to be granted
Good for cloud incidents

Can be done in our boxes
Good for on-promise services

Risk Can ruin the artifacts More safely in experiment

Code artifact If executed, it is there May not be working as expected

Cost at.. Execution skil & delicate 
arrangement

Environment development

Verdict 
possibility

Evidence PoC quality Need more effort to develop 
closest environment, to be 
trusted om its  in PoC quality

Cold 
forensics 
support

Memory artifacts to gain clue 
for more artifact carving on 
cold forensics

Testing artifacts can be used as 
clue for more artifact carving on 
cold forensics



62

Chapter three  Shellcode in memory analysis
> Seeking artifacts on radare2

Hot Forensics Cold Forensics/carving

Seek Command “/?”
Limited Piping & Script 
support

Command “/?”
More piping & scripting support

Sizing Memory block HDD Image block

Bindiffing Command “/m” & “/pm”on 
RAM
(has risk on debugging)

Command “/m” & “/pm”on image 
carving (demerit: time consuming)

Binary/Artifact 
analysis/scan

Supports memory analysis 
while carving artifacts,
Support FRIDA analysis

Support all carving process, need 
resource/time on big size,
Using zignature & Yara.

Stand-alone 
portable 
support

On every OS and 
architecture, only need 
mount

Testing artifacts can be used as 
clue for more artifact carving on 
cold forensics



Chapter four Other tools for shellcode analysis

63

“Happiness of the spring, cleans the heart.”



Chapter four Other tools for shellcode analysis
> Binary tools: radare2, gdb, Ghidra, IDA

64

Radare2  (ref: https://r2wiki.readthedocs.io/en/latest/home/misc/cheatsheet/ )
Open source, powerful static/dynamic RE tools, has DFIR functions, 
script-able, many decompilers, a lot of useful plugin (r2frida, r2yara, 
zignature etc) for supporting many forms of analysis
R2Ghidra was presented in SECCON 2019 in duet talk between me my 
pancake.

Gdb
Open source,.basic of dynamic analysis tools for debugging linux 
executables.

IDA
Commercial tools for reverse engineering professionals, supporting many 
useful analysis plugins, with basis orientation is for Windows users

https://r2wiki.readthedocs.io/en/latest/home/misc/cheatsheet/


Chapter four Other tools for shellcode analysis
> Binary tools: radare2, gdb, Ghidra, IDA

65

R2dev folks (thanks!) made great conversation r2, gdb, IDA commands:
https://radare.gitbooks.io/radare2book/content/debugger/migration.html 

https://radare.gitbooks.io/radare2book/content/debugger/migration.html


Chapter four Other tools for shellcode analysis
> GNU binutils

66

These are 12 GNU binutils tools that is useful for shellcode analysis:

1. as – GNU Assembler Command
2. ld – GNU Linker Command
3. ar – GNU Archive Command
4. nm – List Object File Symbols
5. objcopy – Copy and Translate Object Files
6. objdump – Display Object File Information
7. size – List Section Size and Total Size
8. strings – Display Printable Characters from a File
9. readelf – Display ELF File Info

10. strip – Discard Symbols from Object File
11. addr2line – Convert Address to Filename and Numbers
12. c++filt – Demangle Command



Chapter four Other tools for shellcode analysis
> Cross compilation platform

67

These are tools for my (minimum) recommended for cross-compilation 
tools setup for shellcode research:

1. Buildroot - https://buildroot.org 
  (used to perform multiple cross-compilation on a Linux platform)
2. Libncurses & Libncurses-dev - https://invisible-island.net/ncurses/
  (needed by Buidroot)
3. Qemu-system & qemu-user-static - https://www.qemu.org/ 
  (used to run and check binaries with and without VM)
4. (option) uCLibc Cross Compiler - https://www.uclibc.org 
  (additional multiple cross-compilation on a Linux platform)
5. Nasm - https://www.nasm.us/ 
   (multiplatform compilation for assembly codes)

https://buildroot.org
https://invisible-island.net/ncurses/
https://www.qemu.org/
https://www.uclibc.org
https://www.nasm.us/


Chapter five  Conclusion & Reference

68

“What have we learned today..”



Conclusion in Q & A

69

Why we need to know shellcode this much? 
The shellcode attacks on Linux (and other OS also) is getting more 
advance everyday, as blue-teamer we have to be as proactive as 
red-teamer to analyze the progress of shellcode & its injection 
development, even before it hits us.

How to follow the progres for shellcode development?
(see the next page checklist)

What skill-set do I really need to start doing shellcode research?
Start from things that you’re good at! You can start by coding, or you 
can assembly break codes is up to you, maybe you can generate the 
codes by checking each tools, or, you can just checking each behavior of 
either shellcodes and how it is generated too!



The shellcode checklist

1. Understanding shellcode’s purpose:
■ To gain shell for command or file execution
■ A loader, a downloader, further intrusion stages
■ Sockets are mostly in there, to write, connect, pipe, exec etc
■ To be fileless and leaving no artifact traces

2. How do we collect Shellcode information:
■ Post Exploitation frameworks: Empire, Cobalt Strike, 

Metasploit/Meterpreter/Venom, etc exploit & injection toolings
■ Self generated (need compiler, linker and disassembler)
■ Adversaries cyber threat intelligence

3. Sources for shellcode to follow in the internet:
■ Exploit development sites (PacketStorm, 

ShellStorm,ExploitDB etc)
■ Vulnerability PoC
■ Trolling read teamer :-P 70



Tips: Shellcode handling - in forensics perspective

For digital forensics folks on dealing with shellcode type of incidents, the 
below details are a good start:
● Understanding how it is executed in a compromised systems,and then 

preventing it. There is no magic that can cause a shellcode to run by 
itself in any system. Its source may come from other unseen vectors. 

● As blue teamer and IR analyst, exploitation threat research is 
important to assess our perimeters. Questions like: “Are we prepare 
enough to this type of intrusion?” matters. 

● You can’t rely only on what has been going on in an affected device 
without using more information from other environments. Other 
devices, network/server/proxy/firewall logs are your eyes and ears.

● If a suspicious threat resource can be gathered, try to reproduce it 
yourself and carve the artifacts you may miss or unseen.

● Make your own signature & playbook  is recommendable. 71



Tips: My blue teamer’s playbook share on shellcode 

1. Be resourceful enough, when dealing with UNIX basis systems do not 
to be afraid to analyze a live memory. 

2. Use independent and a good binary analysis tool, RADARE2 is my 
personal tool to deal with all binary codes.  

3. Investigate as per shown in previous examples, and adjust it with your 
own policy, culture and environments.

4. Three things that we are good at blue teamer that can bring nightmare 
to adversaries, they are:
○ We break the codes better
○ We combine analysis, or we share how-to re-gen and share ways 

we do OSINT research, these make the game more fair.
○ We document our report and knowledge for verticals and 

horizontal purpose
5. Support the open source community that helps security community. 72



Reference

73

Linux code injection projects in open source that invokes shellcode
https://github.com/r00t-3xp10it/venom
https://github.com/jtripper/parasite
https://github.com/gaffe23/linux-inject 
https://github.com/ixty/mandibule
https://github.com/dismantl/linux-injector
https://github.com/hc0d3r/alfheim
https://github.com/rastating/slae 
https://github.com/kubo/injector
https://github.com/Screetsec/Vegile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/swick/codeinject
https://github.com/DominikHorn/CodeInjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/

https://github.com/r00t-3xp10it/venom
https://github.com/jtripper/parasite
https://github.com/gaffe23/linux-inject
https://github.com/ixty/mandibule
https://github.com/dismantl/linux-injector
https://github.com/hc0d3r/alfheim
https://github.com/rastating/slae
https://github.com/kubo/injector
https://github.com/Screetsec/Vegile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/swick/codeinject
https://github.com/DominikHorn/CodeInjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/


I thank “cool” ROOTCON’s Crews for having me 
doing this talk!

Many thanks to a lot of people who support to my 
health recovery condition so this know-how is 
possible to share!

Please see other talks materials from 2018, 
maybe you’ll like them.

                 @unixfreaxjp, Oct 2020, Tokyo, Japan

Salutation and thank you 

74



Question(s)?

75


