
Two Wires, and 
Two Wheels, 

Bikes Can Do CAN 
Too



1. WHOAMI

2. The Bike and Brand

3. Why? (Project Inspiration and Purpose)

4. The Hurdles

5. The Project begins(What I used and what I built)

a. Hardware

b. Engine Simulation

c. CSV Parsing and Data Analyzing

6. What’s Next(Project Future)



WHOAMI
Derrick

Director of IT

Twitter: @canbusdutch

Email: CanBusDutch@gmail.com

Github: https://github.com/CircuitWorks1

mailto:CanBusDutch@gmail.com
https://github.com/CircuitWorks1?tab=repositories


My Bike



What is Buell and EBR(Erik Buell Racing)

● The only production sportbike made and designed in the USA
● The only American made motorcycle, to ever score points in World Superbike
● Won the 2009 Daytona Superbike Championship without a single DNF(did 

not finish)
● They manufactured nearly 140,000 motorcycles in 15 years under Harley 

Davidson
● They sold 65 bikes in 18 months, garnering 3 million in revenue as a startup
● It’s a company now, teetering on the edge of existence





2010 Buell Blast



Why? Project Inspiration and Purpose













NO-BD2
There is no diagnostics standard in the 
motorcycle industry. 

There are “universal” diagnostics tools, 
although the byte offset and scaling 
factor for every manufacturer is 
different.

This is a struggle when working with 
motorcycles designed by smaller 
manufacturers.

















History of CAN Systems and Motorcycles
Most European and Japanese manufacturers began implementing a CAN system 
on their bikes around 2003.(Ducati, BMW, Honda, Kawasaki)

American manufacturers were a little late to the CAN party. Buell first implemented 
a CAN system on the 2008 release of their 1125. Harley’s first CAN based bike 
was in 2011, and it wasn’t until 2014 that all Harleys were equipped with a CAN 
system.



My ECM and CAN Protocol

Microcontroller: Microchip Technologies dspic30f6014A-3oi/pf

Diagnostics Data Protocol: J1850 VPW

CAN Protocol: 500Kb/s, 11 bit IDs, 120ohm termination, LSB first bit 
order, 0V nominal



The Hardware



Software
https://github.com/SeeedDocument/U
SB-CAN-Analyzer

https://github.com/SeeedDocument/USB-CAN-Analyzer


Engine Simulation
The most important piece when simulating the engine sensor data of the bike is 
the crankshaft sensor output. The crankshaft sensor produces 2 waves 180 
degrees out of phase with each other. The wave is generated using a hall sensor 
and a stepped rotor/tone ring, surrounding the stator magneto. There are 34 steps 
and a timing gap the equivalent of 2 wavelengths/steps.



Stepped Rotor Design



Let’s Take a Look At It



There is 36 steps(34 steps then the timing gap which is 2 steps). 1 full step every 
10 degrees(360 degrees in a circle). Let’s pick an RPM to simulate. 6000RPM, 
since RPM is a measurement by minutes, and Hz(wave frequency) is a 
measurement by seconds, we would have a math equation that looks like this.

(RPM/60seconds)36steps=frequency

(6000/60)36=3.6khz

How Do We Simulate It?



We take the frequency, input by the user, begin a PWM tone at the given frequency, and calculated 
the time to execute both 34 wavecycles, and 36 wave cycles in microseconds.

example:
rpmTime = 1 / rpmFreq * 1,000,000 * 34
and
rpmRestart = 1 / rpmFreq * 1,000,000 * 36

After we calculate and set our variables, our code logic would look something like the following

If waveStartTime > rpmTime
wave(stop)

If waveStartTime > rpmRestart
wave(start)
waveStartTime = 0

The Code - RPM



The Waveform - RPM



The Code - MPH
The speed sensor simulation is a bit more basic because there is no timing gap. To simulate the speed sensor 
waveform we will take the given frequency, that was input by the user and rapidly turn on and off one of the pins. 
This will generate a square wave at the given frequency.

First we find out the period to complete 1 wave cycle in microseconds

speedTime = 1 / speedFreq * 1,000,000

We can then divide that by 2, to find out how long the pin should remain in each state. We control this action with 
another non-blocking delay.

If delay timer < speedTime/2
pin off
If delay timer > speedTime/2
pin on
If delay timer > speedTime
restart delay timer



The Waveform - MPH



Let’s Give it a try



All This Data and Only One set of Eyes



CSV Structure



Using Python to Analyze the CSVs

● Number of times each ID 
appears

● Number of times a hex 
value appears in each 
given ID

● Number of times each ID 
appears

● Number of times a hex 
value appears in each 
given ID

● Difference in hex value 
appearances

● Increase/decrease 
percentage of hex values

● Appearance of new hex value 
in a given ID

● Hex to binary

Input File1

Input File2

Output File



Output Example



Prototype 1.0



Move to AIM MXS 1.2 Strada



What’s Next?
Extensibility: Ideally an individual would be able to analyze a CAN-bus capture 
session from any manufacturer, with minimal script file editing

Data Visualization:

Byte Annotation: Right now my data is parsed only based on ID and hex values. 
There is no determination on where a value is in the 8 bytes of the packet which 
can lead to a misleading output.

Bit Flip Search: 01(00000001) is found in ID100 in file1.CSV , We would then 
search for 03,05,09,11,21,41,81 and 00 in ID100 in file2.CSV.



Thank You


