

ROOTCON 13

Pilot Study on Semi-Automated Patch Diffing by Applying Machine-Learning Techniques

<u>Asuka Nakajima</u> (@AsuNa_jp) NTT Secure Platform Laboratories

Asuka Nakajima (@AsuNa_jp)

Security Researcher at NTT Secure Platform Laboratories Vulnerability Discovery / Reverse Engineering / IoT Security

• Founder of "CTF for GIRLS"

First female infosec community in Japan (est.2014)

Black Hat Asia Review Board

From 2018-Present

• <u>Veteran Conference/Event Speaker</u>

BlackHatUSA 2019, AsiaCCS 2019, AIS3 2018/2016, PHDays IV, SECCON, etc

#whoami

Background

PART 1 Extracting Security Fix Patterns Using Unsupervised Machine Learning Algorithm*

PART 2 Classifying Security Fixes and Other Fixes*

Conclusion

***Original Paper**

Asuka Nakajima, Ren Kimura, Yuhei Kawakoya, Makoto Iwamura, Takeo Hariu, "An Investigation of Method to Assist Identification of Patched Part of the Vulnerable Software Based on Patch Diffing" Multimedia, Distributed, Cooperative, and Mobile Symposium, June 2017, Japan

What is Patch Diffing?

Identify vulnerable part & Create 1-day exploit

NTT

Example: CVE-2006-4691 (MS06-70)

Stacked-Based Buffer overflow in NetpManagelPCConnect Function

NTT (O

Windows

After Patched (netapi32.dll)

Before Patched (netapi32.dll)

5B88513C 5B88513C	NetpMar mov	nageIPCConnect (x, x, x, x) edi, edi	// _NetpManageIPCConnect@16	5B885130	NetpMa mov	nageIPCConnect(x, x, x, x) edi, edi	// _NetpManagelPCConnect@16
5B88513E	push	ebp		5B88513E	push	ebp	
5B88513F	mov	ebp, esp		5B88513F	mov	ebp, esp	
5B885141	sub	esp, 0x2D8	11 months and the	58885141	sub	esp, 0x2DC	// security codits
58885147	mov	eax, ds:[security_cookie]	//security_cookie	58885147	mov	eax, ds: [security_cookie]	//Security_cookie
				58885153	and	ss: [ebp+0xFFFFFD4C] b1 0x0	
5B88514C	push	ebx		5B88515A	push	ebx	
5B88514D	mov	ss:[ebp+0xFFFFFFC], eax					
5B885150	mov	eax, ss:[ebp+0x10]		5B88515B	mov	ebx, ss:[ebp+0x8]	
5B885153	push	esi		5B88515E	push	esi	
5B885154	mov	esi, ss:[ebp+0x8]		5B88515F	mov	ss:[ebp+0xFFFFFFC], eax	
5B885157	xor	ebx, ebx					
58885159	cmp	b2 ds:[esi], b1 0x5C		EP00E162	mout	onv on: [ohn+0x10]	
5899515D	nuch	odi		58885165	nush	edi	
5888515F	mov	edi se:[ebn+0x0]		58885166	mov	edi ss:[ebp+0xC]	
3000313L	mov	eur, as [eup/oxo]		5B885169	push	ebx	// Str
5B885161	mov	ss:[ebp+0xFFFFFD4C], eax		5B88516A	mov	ss: [ebp+0xFFFFFD48], eax	
5B885167	lea	eax, ss:[ebp+0xFFFFFD54]		5B885170	lea	esi, ss: [ebp+0xFFFFD54]	
5B88516D	mov	ss:[ebp+0xFFFFD50], ebx					
5B885173	jz	0x5B885189					
				5B885176	call	ds: [imp_wcslen]	//impwcslen
			A	5588517G	cmp	eax, 0x101	A
			<u>Assembly</u>	5B885182	jbe	0x5B885199	Assembly
				if(_ Ne	wcslen(tpLogP	(Str) > 0x101){ PrintHelper("NetpMa server na - error ou	nagelPCConnect: me %ws too long ut\n", (char)Str);
if(!v	5)			ret }	urn 87;	;	
`_wcscpy(&Dest, L"\\\\"); v6 = (wchar_t *)&v24			if (_w	*Str != cscpy(&	92){ &Dest, L"\\\\");	Security Check	
<pre>} Pseudo Code</pre>			↓ V4 }	= (wch	lar_t ^)&ν24;	Pseudo Code	

Tools for Patch Diffing

Acquired by Google

- **Bindiff** (Zynamics)
 - https://www.zynamics.com/bindiff.html
- **Turbodiff** (Core SECURITY)
 - https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff
- Diaphora (Joxean Koret)
 - http://diaphora.re/

However, patch diffing is still a difficult task because it requires deep knowledge and experience

Semi-automated patch diffing

Previous Work

DarunGrim

Shows the candidate functions that security fixes might have been applied

Approach

- Use heuristics pattern-matching rules to identify the candidate functions
 - These patterns are manually defined by the developer

Pattern	Туре	Score
cmp	Opcode	+1
test	Opcode	+1
0xFFFFFF	Immediate Value	+3
wcslen	Function Name	+2
strlen	Function Name	+2
StringCchCopyW	Function Name	+2
ULongLongToUlong	Function Name	+2

Machine learning techniques could be applied

PART 1

Extracting Security Fix Patterns Using Unsupervised Machine Learning Algorithm

Hypothesis

Similar Types of Vulnerabilities will be Fixed in a Similar Manner

Null Pointer Dereference

✓ Occurs when a program attempts to read or write to memory with a NULL pointer

 \checkmark Check weather the pointer is NULL or not

CVE-2014-0198

@@ -672,10 +675,6 @@ static int do_ssl3_write(SSL *s,

- if (wb->buf == **NULL**)
- if (!ssl3_setup_write_buffer(s)) + +
 - return -1:

if (len == 0 && !create empty fragment) return 0;

CVE-2015-0288

@@ -92,8 +92,6 @@ X509_REQ ***X509_to_X509_REQ**(X509 *x,

- pktmp = X509_get_pubkey(x); if (pktmp == NULL)

- i = X509_REQ_set_pubkey(ret, pktmp);

EVP PKEY free(pktmp);

Extract Fix Patterns Using Unsupervised Machine Learning Algorithm (Cluster Analysis)

Challenges

Challenge 1 : Optimization

- 1. Basic Block Reordering
- 2. Instruction Reordering
- **3. Operand Changes**
- 4. Inline Expansion / Loop Unrolling

Challenge 2: Other Fixes May Have Been Applied

Challenge 1 Basic Block Reordering

CVE-ID	Program1 (Before Patched)	Program2 (After Patched)	
CVE- 2015- 1788	call 0x81031d0 <bn_copy> test eax,eax setnebl jmp 0x820337a <bn_gf2m_mod_inv+970> mov eax,DWORD PTR [esp+0x38] mov DWORD PTR [esp+0x4],edi mov DWORD PTR [esp],eax call 0x8102f90 <bn_expand2> jmp 0x8203149 <bn_gf2m_mod_inv+409> lea eax,[esp+0x58] mov edx,eax jmp 0x820339a <bn_gf2m_mod_inv+102> shl ecx,0x5 mov DWORD PTR [esp+0x20],ecx jmp 0x8203307 <bn_gf2m_mod_inv+855> mov eax,DWORD PTR [esp+0x30] mov DWORD PTR [esp+0x4],eax mov eax,DWORD PTR [esp+0x3c] mov DWORD PTR [esp],eax call 0x8102f90 <bn_expand2> jmp 0x82031dd <bn_gf2m_mod_inv+557> mov eax,DWORD PTR [esp+0x3d] mov DWORD PTR [esp+0x4],eax mov eax,DWORD PTR [esp+0x3d] mov DWORD PTR [esp],eax call 0x8102f90 <bn_expand2> jmp 0x8203190 <bn_gf2m_mod_inv+480></bn_gf2m_mod_inv+480></bn_expand2></bn_gf2m_mod_inv+557></bn_expand2></bn_gf2m_mod_inv+855></bn_gf2m_mod_inv+102></bn_gf2m_mod_inv+409></bn_expand2></bn_gf2m_mod_inv+970></bn_copy>		call 0x81031d0 <bn_copy> test eax,eax setnebl jmp 0x820338a <bn_gf2m_mod_inv+986> mov eax,DWORD PTR [esp+0x30] mov DWORD PTR [esp+0x4],eax mov eax,DWORD PTR [esp+0x3c] mov DWORD PTR [esp],eax call 0x8102f90 <bn_expand2> jmp 0x82031dd <bn_gf2m_mod_inv+557> mov eax,DWORD PTR [esp+0x30] mov DWORD PTR [esp+0x4],eax mov eax,DWORD PTR [esp+0x34] mov DWORD PTR [esp],eax call 0x8102f90 <bn_expand2> jmp 0x8203190 <bn_gf2m_mod_inv+480> mov eax,DWORD PTR [esp+0x38] mov DWORD PTR [esp+0x4],edi nov DWORD PTR [esp],eax tall 0x8102f90 <bn_expand2> jmp 0x8203149 <bn_gf2m_mod_inv+409> lea eax,[esp+0x58] mov edx,eax jmp 0x82033aa <bn_gf2m_mod_inv+1018> shl ecx,0x5 mov DWORD PTR [esp+0x20],ecx jmp 0x8203317 <bn_gf2m_mod_inv+871></bn_gf2m_mod_inv+871></bn_gf2m_mod_inv+1018></bn_gf2m_mod_inv+409></bn_expand2></bn_gf2m_mod_inv+480></bn_expand2></bn_gf2m_mod_inv+557></bn_expand2></bn_gf2m_mod_inv+986></bn_copy>	

NTT

Challenge 1 Instruction Reordering

CVE-ID	Program1	Program2		
CVE- 2015-1789	<pre>mov [esp+44h+var_4], eax push esi mov ebp, [esp+4Ch+arg_4] push esi mov esi, [esp+4Ch+arg_0] mov ecx, [esi] mov eax, [esi + 8] push edi mov edi, [esi+4] cmp edi, 17h</pre>	<pre>mov [esp+44h+var_4], eax push esi mov ebp, [esp+4Ch+arg_4] push esi mov esi, [esp+4Ch+arg_0] push edi mov edi, [esi+4] mov ecx, [esi] mov eax, [esi + 8] cmp edi, 17h</pre>		
text:11071B40 mov text:11071B45 call text:11071B4A mov text:11071B4A mov text:11071B55 push text:11071B56 mov text:11071B61 mov text:11071B65 mov <tt>text:11071B64 push text:11071B65 mov</tt>	eax, 44h .text:1009D790 mov eax, 44h alloca_probe .text:1009D795 call alloca eax,security_cookie .text:1009D795 call alloca eax,security_cookie .text:1009D796 mov eax,security_cookie eax,security_cookie .text:1009D797 mov eax,security_cookie eax, esp .text:1009D741 mov eax, esp lesp+44h+var_4], eax .text:1009D7A5 push ebp ebp .text:1009D7A6 mov ebp esi .text:1009D7A8 mov esi, [esp+4Ch+arg_0] .text:1009D7A8 mov esi, [esp+4Ch+arg_0] .text:1009D7A8 mov esi, [esi+8] eax, [esi+8] .text:1009D7B5 mov edi, [esi edi .text:1009D7B3 mov ecx, [esi edi .text:1009D7B3 mov ecx, [esi edi .text:1009D7B3 mov ecx, [esi edi, [esi+4] .text:1009D7B5 mov eax, [esi .text:1009D7B5 mov eax, [esi edi, 17h .text:1009D7B8 cmp edi, 17h .text:1009D	probe security_cookie tvar_4], eax b+48h+arg_4] b+4Ch+arg_0] i+4] i+4] i+8]		

NTT (O)

Challenge 1 Operand Changes

CVE-ID	Program1	Program2			
CVE- 2008-5023	xor ebx, ebx add rsp, 38h mov eax, ebx pop rbx pop rbp pop r12 pop r13 retn	xor r12d, r12d add rsp, 38h mov eax, r12d pop rbx pop rbp pop r12 pop r13 retn			
	Register is different (ebx -> r12d)				

NTT

Challenge 1 Inline Expansion/Loop Unrolling

	Source code	Program1 (Before)	Program2 (After)
Inline Expansion	<pre>void my_print(int n){ printf("%d", n); } int main(){ int n = 1; my_print(n); return 0; }</pre>	<pre><main>: push ebp mov ebp,esp sub esp,0x4 mov DWORD PTR [ebp-0x4],0x1 push DWORD PTR [ebp-0x4] call 804840b <my_print> add esp,0x4 mov eax,0x0 leave ret</my_print></main></pre>	<pre><main>: push 0x1 push 0x80484e0 push 0x1 call 8048310 <printf_chk@plt> add esp,0xc xor eax,eax ret</printf_chk@plt></main></pre>
Loop Unrolling	<pre>int main(){ int i; for(i = 0; i < 3; i++){ printf("HelloWorld!"); } return 0; }</pre>	<pre><main>: push ebp mov ebp,esp sub esp,0x4 mov DWORD PTR [ebp-0x4],0x0 jmp 804842b <main+0x20> push 0x80484c0 call 80482e0 <printf@plt> add esp,0x4 add DWORD PTR [ebp-0x4],0x1 cmp DWORD PTR [ebp-0x4],0x2 jle 804841a <main+0xf></main+0xf></printf@plt></main+0x20></main></pre>	<pre><main>: push 0x80484d0 push 0x1 call 8048310 <printf_chk@plt> push 0x80484d0 push 0x1 call 8048310 <printf_chk@plt> push 0x80484d0 push 0x1 call 8048310 <printf_chk@plt></printf_chk@plt></printf_chk@plt></printf_chk@plt></main></pre>

NTT

Experiment Overview

Dataset

Target Software: OpenSSL 1.0.1

- Collected <u>62</u> Security Fixes
- Cluster Analysis
 - Hierarchical Clustering Algorithm

GOAL

Extract security fix patterns which could be used to support the semi-automated patch diffing

Data Collection Method [1/3]

OpenSSL 1.0.1 (git / 4675a56 (openssl 1.0.1 stable)

STEP	1		STEP 2			
Analyze Commit Log & Release note*			Diff the source code & Identify the patched part (Function)			
CVE- ID	Туре	Hash value	@@ -260.7 +265.11 @@ int BN_dec2bn (BIGNUIM **bn_const_char *a)			
CVE-	Before Patched	d36e0ee460f41d6b64015 455c4f5414a319865c3	a++; }			
2012- 2110	After Patched	8d5505d099973a06781b7 e0e5b65861859a7d994	<pre>- for (i = 0; isdigit((unsigned char)a[i]); i++); + for (i = 0; i <= (INT_MAX/4) && isdigit((unsigned char)a[i]); i++)</pre>			
CVE- 2016- 6304	Before Patched	151adf2e5cc23284a059e0 f155505006a1c9fad9	+ continue;			
	After Patched	2c0d295e26306e15a92eb 23a84a1802005c1c137	+ if (i > INT_MAX/4)			

STEP 3

Compile/Disassemble before & after patched source code

*OpenSSL 1.0.1 Series Release Notes

https://web.archive.org/web/20170208161711/https://www.openssl.org/news/openssl-1.0.1-notes.html

NTT

Feature Extraction Method

NTT (O)

Data Collection Method [3/3]

- Summarized and expressed the instructions that fall into similar categories by one (normalized) instruction
 - e.g.) Branch instruction such as jns,jle,jne,jge are normalized as "jump"
- Normalized the instructions which appeared in the security fixes (Function)

Normalized Instruction	Type of Instruction	Target Instuctions
jump	Branch	jns, jle, jne, jge, jae, jmp, js, jl, je, jg, ja, jb, jbe
trans	Data Transfer	movxz, mov, movsx, xchg, cdq
ctrans	Conditional Data Transfer	cmovge, cmovae, cmovs, cmovns, cmove, cmovne
stack	Stack Manipulation	push,pop
logical	Logical Operation	and, xor, or, not
arith	Arithmetic Operation	sub, add, imul, neg, adc
nop	No Operation	nop
bop	Bit/Byte Operation	bt, setne, sete
shift	Shift Operation	shr, shl, sar
func	Function Operation	call, ret
str	String Operation	repz *
cmp	Comparison	test, cmp
lea	Address Computation	lea

Cluster Analysis [1/2]

Divides data into groups that are meaningful/useful

NTT (C

Cluster Analysis [2/2]

Hierarchical Clustering Algorithm

- Produce a classification in which small clusters of very similar data points are nested within larger clusters of less closely-related data points*
 - e.g.) Agglomerative Hierarchical Clustering

Non-Hierarchical Clustering Algorithm

- Generates a classification by partitioning dataset*
 - e.g.) K-means Clustering

Cluster Analysis [2/2]

Divides data into groups that are meaningful/useful

Hierarchical Clustering Algorithm

- Produce a classification in which small clusters of very similar data points are nested within larger clusters of less closely-related data points*
 - e.g.) Agglomerative Hierarchical Clustering

CWE [1/2]

NTT 🕐

CWE (Common Weakness Enumeration)

Used as a label for each data

- List of Software Weakness Types
 - Gives a unique identifier (CWE-ID) to each types
 - e.g, CWE-120:Buffer Copy without Checking Size of Input
 - Latest Version: 3.4 / Total 808 Weaknesses.

https://cwe.mitre.org/data/definitions/120.html

Common Weakness Enumeration A Community-Developed List of Software Weakness Types	Classic Buffer Over flow
Home > CWE List > CWE- Individual Dictionary Definition (3.3)	
Home About	CWE List Scoring Community
CWE-120: Buffer Copy without Checking Size of Inpu	It ('Classic Buffer Overflow')
Weakness ID: 120 Abstraction: Base Structure: Simple	
Presentation Filter: Basic	
▼ Description	
The program copies an input buffer to an output buffer without verifying that the size	of the input buffer is less than the size of the outpu
▼ Extended Description	
A buffer overflow condition exists when a program attempts to put more data in a buff error, and the most common cause of buffer overflows, is the "classic" case in which t suggests that the programmer is not considering even the most basic of security prote	fer than it can hold, or when a program attempts to he program copies the buffer without restricting ho ections.
▼ Relationships	

CWE organizes a wide variety of weakness types in a <u>hierarchical structure</u>

Structure Types

- Development Concepts
- Research Concepts
- Architectural Concepts

CWE organizes a wide variety of weakness types in a <u>hierarchical structure</u>

Result

CVE-ID + Label (CWE-ID)

Details of the Cluster 1

Most of the labels are CWE-19 (Data Processing Error)

CWE-ID	CVE-ID	Feature Vectors (Normalized Instruction : # of Occurrences)
CWE-19	CVE-2016-6306	jump: 9 , trans: 7 , cmp: 6 , lea: 4 , arith: 3 , func: 1
CWE-19	CVE-2016-0797	jump: 7 , lea: 4 , cmp: 4 , trans: 2 , arith: 2
CWE-19	CVE-2015-0206	jump: 7 , trans: 5 , func: 4 , stack: 4 , cmp: 4 , arith: 2 , lea: 1
CWE-19	CVE-2014-3508	jump: 9 , trans: 5 , cmp: 5 , stack: 4 , nop: 3 , lea: 2 , arith: 2 , bop: 1 , func: 1
CWE-398	CVE-2014-5139	jump: 7 , stack: 4 , cmp: 3 , logical: 2 , trans: 2 , nop: 2 , func': 1

Summary

✓ Most of the vulnerabilities in this cluster are related to the memory or value manipulation error, which was not initially expected by developers

- e.g.) Out-of-bounds read, info-leak, integer overflow)
- ✓ A certain number of Comparison/Branch/Arithmetic Operation instructions exist

CVE-2016-0797

Integer Overflow Vulnerability

Patched Part of CVE-2016-0797 @@ -190,11 +189,7 @@ int BN_hex2bn(BIGNUM **bn, **for** (i = 0; i <= (INT_MAX/4) && + isxdigit((unsigned char)a[i]); i++) continue; + + **if** (i > INT_MAX/4) Will be used in bn_expand(ret, i*4) + goto err; + **for** (i = 0; isxdigit((unsigned char)a[i]); i++);

Added a check to confirm the integer value is under the expected upper limit

Details of the <u>Cluster 2</u>

CWE-ID	CVE-ID	Feature Vectors: (Normalized Instruction : # of Occurrences)
CWE-254	CVE-2015-1793	trans: 4 , jump: 3 , ctrans: 1 , nop: 1 , func: 1
CWE-254	CVE-2014-3567	trans: 4 , jump: 2 , func: 1
CWE-254	CVE-2014-3470	trans: 4 , jump: 2 , nop: 2 , lea: 1 , func: 1 , cmp: 1
CWE-254	CVE-2015-0205	trans: 5 , func: 1
CWE-254	CVE-2014-0224	trans: 5 , jump: 3 , logical: 2 , cmp: 1
CWE-19	CVE-2014-0195	trans: 6 , jump: 3 , cmp: 1

Summary

- ✓ Most of the security fixes for the vulnerabilities in this cluster contain some sort of error handling function
- ✓ A certain number of Data Transfer/Branch/Function related instructions exist

CVE-2014-3470

NULL Pointer Dereference

```
Patched Part of CVE-2014-3470
@@ -2512,13 +2512,6 @@ int ssl3_send_client_key_exchange
   int field size = 0;
    if (s->session->sess_cert == NULL)
+
+
      ssl3_send_alert(s,SSL3_AL_FATAL,
+
              SSL_AD_UNEXPECTED_MESSAGE);
       SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
+
             SSL_R_UNEXPECTED_MESSAGE);
       goto err;
+
+
```

Added two error handling function + exit the function

Discussions

Why Only Two Clusters?

We count the number of occurrences of normalized instructions

- Some vulnerabilities are found in multiple functions
 - Similar functions contain same vulnerability

How to Improve

- Include other features such as function name?
- Collect more security fixes
 - Use vulnerability corpus generation tools? (e.g, LAVA)
- Use other machine learning techniques

For Semi-Automated Patch-Diffing

Centroid

Calculate the similarity between the extracted security fix patterns (instructions) and the difference (increased instructions) found by the patch diffing

Classifying Security Fixes and Other Fixes

Classifying Security Fixes and Other Fixes

Dataset

OpenSSL 1.0.1 (<u>62</u> Security Fixes / <u>377</u> Other fixes)

Classification Method

- Supervised Linear Classifier
 - Soft Margin Support Vector Machine (SVM)
 - Kernel: RBF (C=10, $\gamma = 0.001$)

Experiment

- Used <u>62</u> Security Fixes and <u>62</u> Other fixes (Random sampling)
- > Conducted 10-fold Cross-Validation $\underline{3}$ times
 - Perform random sampling for each cross-validation

Environment

> OS: Ubuntu 14.04, Compiler: gcc 5.4.0

Method used for classification (+regression) tasks

Result

NTT 🕐

	Type of Fix	Dataset 1	Dataset 2	Dataset 3	Average
Accuracy		0.62	0.54	0.54	0.56
Precision	Security Fix	0.70	0.57	0.57	0.61
	Other	0.59	0.54	0.54	0.55
Recall	Security Fix	0.42	0.49	0.42	0.41
	Other	0.82	0.71	0.68	0.73
F-Score	Security Fix	0.53	0.46	0.44	0.47
	Other	0.68	0.61	0.63	0.64

Summary of Result

Summary

- **• Overall Accuracy** : <u>56%</u> (average)
- **Security Fixes: Precision** <u>61%</u> / Recall <u>41%</u> (average)
- **Other Fixes: Precision** <u>55%</u> / Recall <u>73%</u> (average)

Discussions

Use other metrics? (e.g., Cyclomatic complexity)

Glossary	
Accuracy	Ratio of the number of correctly labeled fixes to the number of all fixes in the dataset
Precision	Ratio of the number of correctly labeled security fixes to the number of all fixes labeled as "security fix" by the program
Recall	Ratio of the number of correctly labeled security fixes to the number of all security fixes in the dataset
F-Score	Harmonic mean of the Precision and Recall

Summary & Conclusion

Extracted security fix patterns which could be used to support the semi-automated patch diffing

Conducted an experiment to see if it is possible to distinguish between security fixes and other fixes

Provided insights for future research related to the semi-automated patch diffing

Appendix [1/3]

Original Paper

Asuka Nakajima, Ren Kimura, Yuhei Kawakoya, Makoto Iwamura, Takeo Hariu, "An Investigation of Method to Assist Identification of Patched Part of the Vulnerable Software Based on Patch Diffing" Multimedia, Distributed, Cooperative, and Mobile Symposium, June 2017, Japan

パッチ差分に基づく脆弱性修正箇所の特定支援技術の検討

中島明日香1 木村廉2 川古谷祐平1 岩村誠1 針生剛男1

概要:近年、既知の能弱性箇所の特徴に基づいた脆弱性発見手法が注目されており、その手法を利用して少なくはな い戦弱性が発見されている。しかし既存手法では、利用する策弱性箇所の特徴を、主にソースコードから収集してお り、実行ファイルに含まれる戦弱性箇所は、その解析・収集の職したは対象外であった。そのため必然的に プライエタリなソフトウェアの勉強性の特徴は利用できず、発見可能な統領性も伝見られていた。戦時性修正前後の実 イファイルを転載パッテ基分解的して、振興性臨所の特定を支援する技術は存在するものの、既存手述では特定可 能な鏡弱性箇所が限られており、かつ実行ファイル中で鏡弱性修正以外の修正が行われていた場合、その判別が難し

そこで本論文では、航弱性差所収集を最終目的として、航弱性修正を含めたプログラム修正が存在する実行ファイ 中から、網羅的に航弱性修正箇所の特定を支援する技術の検討を行った、具体的には、網羅的な施弱性修正箇所発 見を目指して、まずはオープンソースソフトウェアから収集した。既知の勉強性修正箇所をクラスタ分析手法で分類 し、通ずら特徴の場合調整調査にとして次に、線分分類器を利用して、収集した勤務性修正箇所とその他の修正が 感別可能か否かを検証した。その結果、戦時性修正箇所の分類では部分的に支持する外徴は見合われたが、戦時性修正 とその他の修正の識別は正解率56%と高くはなく、識別に利用する入力データの改善が課題として浮かびあがった

An Investigation of Method to Assist Identification of Patched Part of the Vulnerable Software Based on Patch Diffing

ASUKA NAKAJIMA¹ REN KIMURA² YUHEI KAWAKOYA¹ MAKOTO IWAMURA¹ TAKEO HARIU¹

研究の背景と動機

アの脆弱性がある. 脆弱性とは、ソフトウェアのバグの一 既知の脆弱性箇所を把握することが必須ではあるが、修正 種で、第三者から悪用可能なバグのことを指し、マルウェ ア感染をはじめとした各種サイバー攻撃に用いられる. こ ベンダー公式サイトに掲載されてない場合があり、知り得 の脆弱性に起因するサイバー攻撃の被害を防ぐためにも、 開発段階で脆弱性を作りこまない努力が各ソフトウェアベ ンダによってなされているが、それも完璧では無く、脆弱 性が残存したまま公開されてしまう場合が多い、そのため、 それらの脆弱性をいち早く見つけ修正するためにも、ソフ 定できる.しかし、ソースコードが公開されていない実行 トウェア中から脆弱性を発見するための技術が大事になっ ファイルのみが入手可能なソフトウェアの場合, 脆弱性菌 てくる.

ソフトウェアから脆弱性を発見する技術には、ファジン グ[1]やシンボリック実行[2]などが挙げられるが、近年はそ の中でも、コードクローンの輸退性を対象とした輸退性発 見技術が着目されている[3][4][5][6]. このコードクローン の脆弱性とは、ソフトウェア中に存在した脆弱性部分がソ ースコードの流用などが原因で、他所にも複製されてしま

このコードクローンの脆弱性発見技術は、既知の輸弱性 箇所を基に、検査対象のソフトウェア中に同様の脆弱性が サイバー攻撃の根本的な原因の一つとしてソフトウェ 存在するか否かを検査するものである. そのため、事前に された胎園性箇所の情報は胎園性情報データベース[7]や たい場合には各自で調査する他なかった。

> 脆弱性箇所の特定方法としては、ソフトウェアのソースコ ードが入手可能な場合は、修正前後のソースコードの差分 (パッチ差分)に着目すれば、ある程度容易に修正箇所を特 所を特定するのは、逆アセンブルされたプログラムコード を読む能力に加え、コンパイラやリンカの最適化がアセン プリに与える影響などの知見が必要になり,容易ではない. その上、開発者が胎園性修正以外の修正も加えていた場合。 脆弱性修正とそれ以外の部分を区別する必要もあり、それ には手間と時間を悪した

Download URL

https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=190132&file _id=1&file_no=1

Appendix [2/3]

Other Research (1)

- <u>Asuka Nakajima</u>, Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Maverick Woo <u>"A Pilot Study on Consumer IoT Device Vulnerability</u> <u>Disclosure and Patch Release in Japan and the United States"</u>
 Proceedings of the 14th ACM ASIA Conference on Information, Computer and Communications Security <u>ASIA CCS 2019</u>
 - [PDF] <u>https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab19001.pdf</u>

Revealed Significant 1-Day Risk Related to IoT

Appendix [3/3]

• Other Activities (Female InfoSec Community)

- CTF for GIRLS: <u>http://girls.seccon.jp</u> (Twitter:@ctf4g)
- <u>Asuka Nakajima</u>, Suhee Kang, Hazel Yen, "Women in Security: Building a Female InfoSec Community in Korea, Japan, and Taiwan", BlackHatUSA 2019

Questions?

E-mail: asuka.nakajima.db@hco.ntt.co.jp Twitter: @AsuNa_jp