
Pilot Study on

Semi-Automated Patch Diffing by

Applying Machine-Learning Techniques

Asuka Nakajima (@AsuNa_jp)

NTT Secure Platform Laboratories

ROOTCON 13

2

#whoami

 Asuka Nakajima (@AsuNa_jp)

Security Researcher at NTT Secure Platform Laboratories

Vulnerability Discovery / Reverse Engineering / IoT Security

 Founder of “CTF for GIRLS”

First female infosec community in Japan (est.2014)

 Black Hat Asia Review Board

From 2018-Present

 Veteran Conference/Event Speaker

BlackHatUSA 2019, AsiaCCS 2019, AIS3 2018/2016, PHDays IV, SECCON,etc

3

Agenda

Background

Extracting Security Fix Patterns Using

Unsupervised Machine Learning Algorithm*

Classifying Security Fixes and Other Fixes*

Conclusion

PART 1

PART 2

*Original Paper
Asuka Nakajima, Ren Kimura, Yuhei Kawakoya, Makoto Iwamura, Takeo
Hariu, “An Investigation of Method to Assist Identification of Patched Part of the Vulnerable Software Based on Patch

Diffing” Multimedia, Distributed, Cooperative, and Mobile Symposium, June 2017, Japan

4

What is Patch Diffing?

Before Patched After Patched

Identify vulnerable part & Create 1-day exploit

Compare

5

Example: CVE-2006-4691 (MS06-70)

Before Patched (netapi32.dll) After Patched (netapi32.dll)

if (!v5)

{

_wcscpy(&Dest, L"\\\\");

v6 = (wchar_t *)&v24;

}

if (_wcslen(Str) > 0x101){

NetpLogPrintHelper(“NetpManageIPCConnect:
server name %ws too long

- error out\n“, (char)Str);

return 87;

}

if (*Str != 92){

_wcscpy(&Dest, L"\\\\");

v4 = (wchar_t *)&v24;

}

Assembly

Pseudo Code

Assembly

Pseudo Code

Stacked-Based Buffer overflow in NetpManageIPCConnect Function

Windows

Security Check

6

Tools for Patch Diffing

However, patch diffing is still a difficult task

because it requires deep knowledge and experience

 Bindiff (Zynamics)

 https://www.zynamics.com/bindiff.html

 Turbodiff (Core SECURITY)

 https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff

Diaphora (Joxean Koret)

 http://diaphora.re/

Acquired by Google

Semi-automated patch diffing

https://www.zynamics.com/bindiff.html
https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff
http://diaphora.re/

7

Previous Work

Machine learning techniques could be applied

DarunGrim
 Shows the candidate functions that

security fixes might have been applied

 Approach

 Use heuristics pattern-matching rules to identify the candidate functions

 These patterns are manually defined by the developer

Pattern Type Score

cmp Opcode +1

test Opcode +1

0xFFFFFFF Immediate Value +3

wcslen Function Name +2

strlen Function Name +2

StringCchCopyW Function Name +2

ULongLongToUlong Function Name +2

DarunGrim (Jeongwook Oh)

Extracting Security Fix Patterns Using

Unsupervised Machine Learning Algorithm

PART 1

9

Hypothesis

@@ -672,10 +675,6 @@ static int do_ssl3_write(SSL *s,

+ if (wb->buf == NULL)
+ if (!ssl3_setup_write_buffer(s))
+ return -1;
+

if (len == 0 && !create_empty_fragment)
return 0;

CVE-2014-0198

@@ -92,8 +92,6 @@ X509_REQ *X509_to_X509_REQ(X509 *x,

pktmp = X509_get_pubkey(x);
+ if (pktmp == NULL)
+ goto err;

i = X509_REQ_set_pubkey(ret, pktmp);
EVP_PKEY_free(pktmp);

CVE-2015-0288

Similar Types of Vulnerabilities
will be Fixed in a Similar Manner

Null Pointer Dereference

Extract Fix Patterns Using Unsupervised

Machine Learning Algorithm (Cluster Analysis)

 Occurs when a program

attempts to read or write

to memory with a NULL

pointer

 Check weather the

pointer is NULL or not

10

Challenges

Challenge 1 : Optimization

Challenge 2 : Other Fixes May Have Been Applied

1. Basic Block Reordering

2. Instruction Reordering

3. Operand Changes

4. Inline Expansion / Loop Unrolling

11

Challenge1: Basic Block ReorderingChallenge 1

CVE-ID Program1 (Before Patched) Program2 (After Patched)

CVE-

2015-

1788

call 0x81031d0 <BN_copy>

test eax,eax

setnebl

jmp 0x820337a <BN_GF2m_mod_inv+970>

mov eax,DWORD PTR [esp+0x38]

mov DWORD PTR [esp+0x4],edi

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x8203149 <BN_GF2m_mod_inv+409>

lea eax,[esp+0x58]

mov edx,eax

jmp 0x820339a <BN_GF2m_mod_inv+1002>

shl ecx,0x5

mov DWORD PTR [esp+0x20],ecx

jmp 0x8203307 <BN_GF2m_mod_inv+855>

mov eax,DWORD PTR [esp+0x30]

mov DWORD PTR [esp+0x4],eax

mov eax,DWORD PTR [esp+0x3c]

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x82031dd <BN_GF2m_mod_inv+557>

mov eax,DWORD PTR [esp+0x30]

mov DWORD PTR [esp+0x4],eax

mov eax,DWORD PTR [esp+0x34]

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x8203190 <BN_GF2m_mod_inv+480>

call 0x81031d0 <BN_copy>

test eax,eax

setnebl

jmp 0x820338a <BN_GF2m_mod_inv+986>

mov eax,DWORD PTR [esp+0x30]

mov DWORD PTR [esp+0x4],eax

mov eax,DWORD PTR [esp+0x3c]

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x82031dd <BN_GF2m_mod_inv+557>

mov eax,DWORD PTR [esp+0x30]

mov DWORD PTR [esp+0x4],eax

mov eax,DWORD PTR [esp+0x34]

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x8203190 <BN_GF2m_mod_inv+480>

mov eax,DWORD PTR [esp+0x38]

mov DWORD PTR [esp+0x4],edi

mov DWORD PTR [esp],eax

call 0x8102f90 <bn_expand2>

jmp 0x8203149 <BN_GF2m_mod_inv+409>

lea eax,[esp+0x58]

mov edx,eax

jmp 0x82033aa <BN_GF2m_mod_inv+1018>

shl ecx,0x5

mov DWORD PTR [esp+0x20],ecx

jmp 0x8203317 <BN_GF2m_mod_inv+871>​​​​​​​

12

Challenge1: Instruction ReorderingChallenge 1

CVE-ID Program1 Program2

CVE-

2015-1789

mov [esp+44h+var_4], eax
push esi
mov ebp, [esp+4Ch+arg_4]
push esi
mov esi, [esp+4Ch+arg_0]
mov ecx, [esi]
mov eax, [esi + 8]
push edi
mov edi, [esi+4]
cmp edi, 17h

mov [esp+44h+var_4], eax
push esi
mov ebp, [esp+4Ch+arg_4]
push esi
mov esi, [esp+4Ch+arg_0]
push edi
mov edi, [esi+4]
mov ecx, [esi]
mov eax, [esi + 8]
cmp edi, 17h

IDA Pro

13

Challenge1: Operand Changes

CVE-ID Program1 Program2

CVE-

2008-5023

xor ebx, ebx

add rsp, 38h

mov eax, ebx

pop rbx

pop rbp

pop r12

pop r13

retn

xor r12d, r12d

add rsp, 38h

mov eax, r12d

pop rbx

pop rbp

pop r12

pop r13

ｒetn

Register is different (ebx -> r12d)

Challenge 1

14

Challenges1: Inline Expansion/Loop UnrollingChallenge 1

Source code Program1 (Before) Program2 (After)

Inline
Expansion

void my_print(int n){

printf("%d", n);

}

int main(){

int n = 1;

my_print(n);

return 0;

}

<main>:
push ebp

mov ebp,esp

sub esp,0x4

mov DWORD PTR [ebp-0x4],0x1

push DWORD PTR [ebp-0x4]

call 804840b <my_print>
add esp,0x4

mov eax,0x0

leave

ret

<main>:
push 0x1

push 0x80484e0

push 0x1

call 8048310 <__printf_chk@plt>

add esp,0xc

xor eax,eax

ret

Loop
Unrolling

int main(){

int i;

for(i = 0; i < 3; i++){

printf("HelloWorld!");

}

return 0;

}

<main>:
push ebp

mov ebp,esp

sub esp,0x4

mov DWORD PTR [ebp-0x4],0x0

jmp 804842b <main+0x20>

push 0x80484c0

call 80482e0 <printf@plt>

add esp,0x4

add DWORD PTR [ebp-0x4],0x1

cmp DWORD PTR [ebp-0x4],0x2

jle 804841a <main+0xf>

<main>:
push 0x80484d0

push 0x1

call 8048310 <__printf_chk@plt>

push 0x80484d0

push 0x1

call 8048310 <__printf_chk@plt>

push 0x80484d0

push 0x1

call 8048310 <__printf_chk@plt>

15

Challenge 2

 Other fixes may have been applied

1. Bug Fixes

2. Refactoring

3. Feature Updates

16

Experiment Overview

Dataset

 Target Software: OpenSSL 1.0.1

Collected 62 Security Fixes

 Cluster Analysis

Hierarchical Clustering Algorithm

Extract security fix patterns which could be used
to support the semi-automated patch diffing

GOAL

17

Data Collection Method [1/3]

OpenSSL 1.0.1 (git / 4675a56 (openssl 1.0.1 stable)

CVE-
ID Type Hash value

CVE-
2012-

2110

Before
Patched

d36e0ee460f41d6b64015

455c4f5414a319865c3

After
Patched

8d5505d099973a06781b7

e0e5b65861859a7d994

CVE-
2016-

6304

Before
Patched

151adf2e5cc23284a059e0

f155505006a1c9fad9

After
Patched

2c0d295e26306e15a92eb

23a84a1802005c1c137

@@ -260,7 +265,11 @@ int BN_dec2bn(BIGNUM **bn, const char *a)

a++;

}

- for (i = 0; isdigit((unsigned char)a[i]); i++) ;

+ for (i = 0; i <= (INT_MAX/4) && isdigit((unsigned char)a[i]); i++)

+ continue;

+

+ if (i > INT_MAX/4)

Compile/Disassemble before & after patched source code

Diff the source code &

Identify the patched part (Function)

Analyze Commit Log &

Release note*

*OpenSSL 1.0.1 Series Release Notes

https://web.archive.org/web/20170208161711/https://www.openssl.org/news/openssl-1.0.1-notes.html

STEP 1 STEP 2

STEP 3

https://web.archive.org/web/20170208161711/https:/www.openssl.org/news/openssl-1.0.1-notes.html

18

STEP 1 STEP 2

Extract the increased

instructions

Normalize the
instructions

After

Normalization

mov
mov
cmp
jne
test
je
push
jmp
lea
pop
…

trans
trans
cmp
jump
cmp
jump
stack
jump
lea
stack
…

of occurrences

(each instruction)

trans: 2

cmp: 2

jump: 3

stack :2

lea : 1

…

Before

Normalization

Count the number of
occurrences of each

normalized instruction

trans
trans
cmp
jump
cmp
jump
stack
jump
lea
stack
…

STEP 3

mov
mov
cmp
jne
test
je
push
jmp
lea
pop
…

Before

Patched

After

Patched

push
mov
sub
jmp
…

push
mov
sub

+ mov
+ mov

jmp
…

Data Collection Method [2/3]

 Feature Extraction Method

Normalized

Instructions
Increased

Instructions

19

Normalized
Instruction

Type of Instruction Target Instuctions

jump Branch jns, jle, jne, jge, jae, jmp, js, jl, je, jg, ja, jb, jbe
trans Data Transfer movxz, mov, movsx, xchg, cdq
ctrans Conditional Data Transfer cmovge, cmovae, cmovs, cmovns, cmove, cmovne
stack Stack Manipulation push,pop

logical Logical Operation and, xor, or, not
arith Arithmetic Operation sub, add, imul, neg, adc
nop No Operation nop
bop Bit/Byte Operation bt, setne, sete
shift Shift Operation shr, shl, sar
func Function Operation call, ret
str String Operation repz *

cmp Comparison test, cmp
lea Address Computation lea

Opcode (Instruction) Normalization
 Summarized and expressed the instructions that fall into similar

categories by one (normalized) instruction

 e.g.) Branch instruction such as jns,jle,jne,jge are normalized as “jump”

 Normalized the instructions which appeared in the security fixes (Function)

Data Collection Method [3/3]

20

Cluster Analysis [1/2]

Divides data into groups that are meaningful/useful

Before Clustering After Clustering

Cluster 1

Cluster 2

Cluster 3

21

Cluster Analysis [2/2]

Hierarchical Clustering Algorithm

 Produce a classification in which small clusters of very similar data points

are nested within larger clusters of less closely-related data points*

 e.g.) Agglomerative Hierarchical Clustering

Non-Hierarchical Clustering Algorithm

 Generates a classification by partitioning dataset*

 e.g.) K-means Clustering

*Hierarchical and non-Hierarchical Clustering

https://www.daylight.com/meetings/mug96/barnard/E-MUG95.html

Divides data into groups that are meaningful/useful

https://www.daylight.com/meetings/mug96/barnard/E-MUG95.html

22

Cluster Analysis [2/2]

Hierarchical Clustering Algorithm

 Produce a classification in which small clusters of very similar data points

are nested within larger clusters of less closely-related data points*

 e.g.) Agglomerative Hierarchical Clustering

*Hierarchical and non-Hierarchical Clustering

https://www.daylight.com/meetings/mug96/barnard/E-MUG95.html

Divides data into groups that are meaningful/useful

Euclidean Distance

&
Ward’s Method

d(A,B) = E(AUB) – E(P) – E(Q)

Cluster A

Cluster B

https://www.daylight.com/meetings/mug96/barnard/E-MUG95.html

23

CWE [1/2]

Classic Buffer Over flow

 CWE (Common Weakness Enumeration)

 List of Software Weakness Types

 Gives a unique identifier (CWE-ID) to each types

 e.g, CWE-120:Buffer Copy without Checking Size of Input

 Latest Version:3.4 / Total 808 Weaknesses.

https://cwe.mitre.org/data/definitions/120.html

Used as a label

for each data

https://cwe.mitre.org/data/definitions/120.html

24

CWE [2/2]

CWE organizes a wide variety of

weakness types in a hierarchical structure

*CWE Overview, IPA

https://www.ipa.go.jp/security/english/vuln/CWE_en.html

 The weakness types at higher
levels in the structure gives a more
abstract and broader concept*

 Structure Types
 Development Concepts
 Research Concepts
 Architectural Concepts

[Parent] CWE-119 -> [Child] CWE-120

https://www.ipa.go.jp/security/english/vuln/CWE_en.html

25

CWE [2/2]

CWE organizes a wide variety of

weakness types in a hierarchical structure

*CWE Overview, IPA

https://www.ipa.go.jp/security/english/vuln/CWE_en.html

 The weakness types at higher
levels in the structure gives a more
abstract and broader concept*

 Structure Types
 Development Concepts
 Research Concepts
 Architectural Concepts

CWE-ID Description

CWE-17 Code

CWE-19 Data Processing Error

CWE-254 Security Features

CWE-361 Time and State

CWE-398 Indicator of Poor Code Quality

CWE-399 Resource Management Errors

Used these root

CWE-IDs as labels

[Parent] CWE-119 -> [Child] CWE-120

https://www.ipa.go.jp/security/english/vuln/CWE_en.html

26

Result

② ①
Cluster 2

Cluster 1

Dendrogram

CVE-ID + Label (CWE-ID)

27

Details of the Cluster 1

CWE-ID CVE-ID
Feature Vectors

(Normalized Instruction：# of Occurrences)

CWE-19 CVE-2016-6306 jump: 9, trans: 7, cmp: 6, lea: 4, arith: 3, func: 1

CWE-19 CVE-2016-0797 jump: 7, lea: 4, cmp: 4, trans: 2, arith: 2

CWE-19 CVE-2015-0206 jump: 7, trans: 5, func: 4, stack: 4, cmp: 4, arith: 2, lea: 1

CWE-19 CVE-2014-3508
jump: 9, trans: 5, cmp: 5, stack: 4, nop: 3, lea: 2, arith: 2,

bop: 1, func: 1

CWE-398 CVE-2014-5139
jump: 7, stack: 4, cmp: 3, logical: 2, trans: 2, nop: 2,

func': 1

Most of the labels are CWE-19 (Data Processing Error)

 Most of the vulnerabilities in this cluster are related to the memory or value

manipulation error, which was not initially expected by developers

• e.g.) Out-of-bounds read, info-leak, integer overflow)

 A certain number of Comparison/Branch/Arithmetic Operation instructions exist

Summary

28

CVE-2016-0797

Patched Part of CVE-2016-0797

@@ -190,11 +189,7 @@ int BN_hex2bn(BIGNUM **bn,

}

+ for (i = 0; i <= (INT_MAX/4) &&

isxdigit((unsigned char)a[i]); i++)

+ continue;

+

+ if (i > INT_MAX/4)

+ goto err;

- for (i = 0; isxdigit((unsigned char)a[i]); i++) ;

Added a check to confirm the

integer value is under the expected upper limit

Integer Overflow Vulnerability

Will be used in bn_expand(ret, i*4)

29

CWE-ID CVE-ID
Feature Vectors:

(Normalized Instruction：# of Occurrences)

CWE-254 CVE-2015-1793 trans: 4, jump: 3, ctrans: 1, nop: 1, func: 1

CWE-254 CVE-2014-3567 trans: 4, jump: 2, func: 1

CWE-254 CVE-2014-3470 trans: 4, jump: 2, nop: 2, lea: 1, func: 1, cmp: 1

CWE-254 CVE-2015-0205 trans: 5, func: 1

CWE-254 CVE-2014-0224 trans: 5, jump: 3, logical: 2, cmp: 1

CWE-19 CVE-2014-0195 trans: 6, jump: 3, cmp: 1

Details of the Cluster 2

Most of the labels are CWE-254 (Security Features)

 Most of the security fixes for the vulnerabilities in this cluster contain some sort

of error handling function

 A certain number of Data Transfer/Branch/Function related instructions exist

Summary

30

CVE-2014-3470

Patched Part of CVE-2014-3470

@@ -2512,13 +2512,6 @@ int ssl3_send_client_key_exchange

int field_size = 0;

+ if (s->session->sess_cert == NULL)

+ {

+ ssl3_send_alert(s,SSL3_AL_FATAL,

SSL_AD_UNEXPECTED_MESSAGE);

+ SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,

SSL_R_UNEXPECTED_MESSAGE);

+ goto err;

+ }

Added two error handling function + exit the function

NULL Pointer Dereference

31

Discussions

Why Only Two Clusters?

 Some vulnerabilities are found in multiple functions

 Similar functions contain same vulnerability

How to Improve

 Include other features such as function name?

 Collect more security fixes

 Use vulnerability corpus generation tools? (e.g, LAVA)

 Use other machine learning techniques

 For Semi-Automated Patch-Diffing
 Calculate the similarity between the extracted security fix patterns

(instructions) and the difference (increased instructions) found by the

patch diffing

*LAVA: Large-scale Automated Vulnerability Addition

https://www.andreamambretti.com/files/papers/oakland2016_lava.pdf

We count the number of

occurrences of normalized instructions

Centroid

https://www.andreamambretti.com/files/papers/oakland2016_lava.pdf

Classifying Security Fixes and Other Fixes

PART 2

33

Classifying Security Fixes and Other Fixes

Dataset

 OpenSSL 1.0.1 (62 Security Fixes / 377 Other fixes)

 Classification Method

 Supervised Linear Classifier

 Soft Margin Support Vector Machine (SVM)

 Kernel: RBF (C=10, γ = 0.001)

 Experiment

 Used 62 Security Fixes and 62 Other fixes (Random sampling)

 Conducted 10-fold Cross-Validation 3 times

• Perform random sampling for each cross-validation

 Environment
 OS: Ubuntu 14.04, Compiler: gcc 5.4.0

34

Support Vector Machine (SVM)

Method used for classification (+regression) tasks

Before After

A

A

A

A
B

B

BB

BB

B

A

BA

B

A

A

A

A

A
B

B

BB

BB

B

A

BA

B

A

A A

35

Result

Type of Fix Dataset 1 Dataset 2 Dataset 3 Average

Accuracy 0.62 0.54 0.54 0.56

Precision
Security Fix 0.70 0.57 0.57 0.61

Other 0.59 0.54 0.54 0.55

Recall
Security Fix 0.42 0.49 0.42 0.41

Other 0.82 0.71 0.68 0.73

F-Score
Security Fix 0.53 0.46 0.44 0.47

Other 0.68 0.61 0.63 0.64

36

Summary of Result

 Summary

 Overall Accuracy : 56% (average)

 Security Fixes: Precision 61% / Recall 41% (average)

 Other Fixes: Precision 55% / Recall 73% (average)

Discussions

 Use other metrics? (e.g., Cyclomatic complexity)

Accuracy Ratio of the number of correctly labeled fixes to the number of all fixes in the dataset

Precision
Ratio of the number of correctly labeled security fixes to the number of all fixes

labeled as “security fix” by the program

Recall
Ratio of the number of correctly labeled security fixes to the number of all security

fixes in the dataset

F-Score Harmonic mean of the Precision and Recall

Glossary

37

Summary & Conclusion

 Patch diffing is still a difficult task because it requires

a deep knowledge and experience

✔

 Extracted security fix patterns which could be used

to support the semi-automated patch diffing

 Conducted an experiment to see if it is possible to

distinguish between security fixes and other fixes

✔

✔

Provided insights for future research

related to the semi-automated patch diffing

38

Appendix [1/3]

 Original Paper

Asuka Nakajima, Ren Kimura, Yuhei Kawakoya, Makoto Iwamura, Takeo Hariu, “An

Investigation of Method to Assist Identification of Patched Part of the Vulnerable

Software Based on Patch Diffing” Multimedia, Distributed, Cooperative, and Mobile

Symposium, June 2017, Japan

Download URL
https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=190132&file

_id=1&file_no=1

39

Appendix [2/3]

Other Research (1)

 Asuka Nakajima, Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and

Maverick Woo “A Pilot Study on Consumer IoT Device Vulnerability
Disclosure and Patch Release in Japan and the United States”

Proceedings of the 14th ACM ASIA Conference on Information, Computer and

Communications Security (ASIA CCS 2019)

 [PDF] https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab19001.pdf

Revealed Significant 1-Day Risk Related to IoT

ASIA CCS 2019

Example: CVE-2017-7852

Patch Release
Timeline

DCS-932L RevA

2015/Nov/18

DCS-932L RevA

2016/Jul/19

244 Days Vendor: D-Link, Product: Network Camera

1-Day Risk: Unsynchronized Patch Release (Geographical Arbitrage)

https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab19001.pdf

40

Appendix [3/3]

 Other Activities (Female InfoSec Community)

 CTF for GIRLS: http://girls.seccon.jp (Twitter:@ctf4g)

 Asuka Nakajima, Suhee Kang, Hazel Yen, “Women in Security:
Building a Female InfoSec Community in Korea, Japan, and Taiwan”,
BlackHatUSA 2019

Women-Only CTF Workshop Talk about Asian Female InfoSec Community

http://girls.seccon.jp/

Questions?

Asuka Nakajima E-mail: asuka.nakajima.db@hco.ntt.co.jp

Twitter: @AsuNa_jp

