
Web	Application	Security

Expert	advice.	Experience	advantage.
Proactive	Security	Solutions	Through	Cutting-Edge	Research.

www.pandoralabs.net

Expert	advice.	Experience	advantage.
Proactive	Security	Solutions	Through	Cutting-Edge	Research.

We	are	a	
Security-as-a-Service	

company

Providing	businesses	with	on-demand	threat	
detection	&	intelligence	resources	and	

capabilities,	for	24x7	protection.

We	Make	IT	Secure
www.pandoralabs.net

Who	we	are.	Why	we	exist.PANDORA SECURITY LABS

We	Build	Security	Software
What	do	we	really	do?

Security Information & Event Manager Web Application Firewall & CDN

www.webranger.io

& WE ARE
COOKING
MORE!

www.pandoralabs.net

#pandoralabs

Who	we	are.	Why	we	exist.PANDORA SECURITY LABS

Our	Capabilities
Solutions	we	created	from	our	
capabilities	to	complement	you	
needs:

• Defensive	Technologies
• Offensive	Intelligence
• Administrative	Expertise

ThreatScout

Pandora SOC

SENSOR
UTMs

LOG	AGENTS
WAFs

ANALYTICS
SIEM

CORRELATION
INTEL

OPERATIONS
FORENSICS

24x7	MONITOR
IRT/ERT

#pandoralabs

Who	we	are.	Why	we	exist.PANDORA SECURITY LABS

Developing	Secure	Web	Apps
Tips	in	to	developing	a	secure	web	application.

Web	Application	SecurityPANDORA SECURITY LABS

Always	Use	TLS
• Transport	Layer	Security
• Latest	version	1.2
• Ensures	that	data	is	encrypted	as	it	travels	the	wire
• Ensures	integrity	using	message	authentication	code
• Let’s	Encrypt	project	provides	free	SSL	certificates	for	TLS
• Use	tools	like	SSL	Test	by	Qualys to	verify	TLS	configuration

PANDORA SECURITY LABS Web	Application	Security

Always	Use	TLS

Let	me	demo:
Wireshark plaintext

SSL	Labs

PANDORA SECURITY LABS Web	Application	Security

Never	store	plaintext	passwords

Hash passwords	when	you	store	them	in	the	database

Provision	your	code	and	database	such	that	the	hashing	algorithm	
can	be	changed

ALWAYS hash	with	unique	salts	per	record,	this	prevents	rainbow	
table	attacks

PANDORA SECURITY LABS Web	Application	Security

Never store	plaintext	passwords

Let	me	demo:
Google	the	plaintext	of	hash

Hash	with	salt	logic

PANDORA SECURITY LABS Web	Application	Security

Use	Strong	Authentication

Strong	authentication	(such	as	tokens,	certificates,	etc.)	provides	a	
higher	level	of	security	than	username	and	passwords.

The	generalized	form	of	strong	authentication	is	“something	you	
know,	something	you	hold”.

PANDORA SECURITY LABS Web	Application	Security

Use	Strong	Authentication

When to	use	strong	authentication:
•	For	high	value	transactions
•	Where	privacy	is	a	strong	or	legally	compelled	consideration	(such	
as	health	records,	government	records,	etc)
•	Where	audit	trails	are	legally	mandated	and	require	a	strong
association	between	a	person	and	the	audit	trail,	such	as	banking
applications
•	Administrative	access	for	high	value	or	high	risk	systems

PANDORA SECURITY LABS Web	Application	Security

Use	Strong	Authentication

Best	practices:
• Authentication	is	only	as	strong	as	your	user	management	processes
•	Use	the	most	appropriate	form	of	authentication	suitable	for	your	asset	
classification
•	Re-authenticate	the	user	for	high	value	transactions	and	access	to	protected	
areas	(such	as	changing	from	user	to	administrative	level	access)
•	Authenticate	the	transaction,	not	the	user
•	Passwords	are	trivially	broken	and	are	unsuitable	for	high	value	systems.

PANDORA SECURITY LABS Web	Application	Security

Enforce	Good	Session	Management

Session	management	is	by	its	nature	closely	tied	to	authentication,
but	this	does	not	mean	users	should	be	considered	authenticated
until	the	web	application	has	taken	positive	action	to	tie	a	session

with	a	trusted	credential	or	other	authentication	token.

If	possible,	tie	a	session	to	a	specific	IP.	Force	re-authenticate	if	the	IP	
changes.	This	is	to	prevent	hijacking	and	replay	attacks.

Enforce	session	timeouts.

PANDORA SECURITY LABS Web	Application	Security

Enforce	Good	Session	Management

Ensure	that	unauthenticated	users	does	not	have	any	or	have	minimal	
privileges	only.

Ensure	all	unprotected	pages	use	as	few	resources	as	possible.	

Ensure	that	session	tokens	are	user-unique,	non-predictable,	and	
resistant	to	reverse	engineering.	

PANDORA SECURITY LABS Web	Application	Security

Use	Parameterized	Queries	/	Stored	
Procedures
• Injection	happens	when	data	is	supplied	from	one	component	to	
another
• Hackers	"inject"	their	code	to	run	instead	of	yours
• Example:	SQL	injection	attack	String	query	=	"SELECT	*	FROM	products	
WHERE	name='"	+	request.getParameter("id")	+"'";

• Code	expects	a	nice	parameter	in	the	URL
• http://example.com/products?id=123
• Hacker	could	instead	supply	this:	
http://example.com/products?id=';+DROP+TABLE+'products';

PANDORA SECURITY LABS Web	Application	Security

Use	Parameterized	Queries	/	Stored	
Procedures
Example:
String	prodId=	request.getParameter(“productId");	
String	query	=	"SELECT	product_status FROM	product_data WHERE	product_id = ?	
";	

PreparedStatement pstmt =	connection.prepareStatement(query);
pstmt.setString(1,	prodId);	
ResultSet results	=	pstmt.executeQuery();

PANDORA SECURITY LABS Web	Application	Security

Sanitize	and	Validate	User	Input

Always	assume	the	data	is	“evil”

ALWAYS	sanitize	input!	(at	the	BACKEND not	front	end!)

Encode	all	user	input	before	using	it

Clean	up	quotes,	semi-colons,	parentheses,	etc.

PANDORA SECURITY LABS Web	Application	Security

Sanitize	and	Validate	User	Input

Data	should	be:
• Strongly	Typed	at	all	times
• Length	Checked	and	Fields	Length	Minimized
• Ranged	check	if	numeric
• Unsigned	unless	required	to	be	signed
• Syntax	or	grammar	should	be	checked	prior	to	first	use	or	inspection
• Sanitized

PANDORA SECURITY LABS Web	Application	Security

Sanitize	and	Validate	User	Input

Coding guidelines should use some form of visible tainting on input
from the client or untrusted sources, such as third party connectors
to make it obvious that the input is unsafe:

taintedPostcode =	getParameter(“postCode”);
validation	=	New	Validation();
postCode =	validation.isPostcode(taintPostcode);

PANDORA SECURITY LABS Web	Application	Security

Sanitize	and	Validate	User	Input

Let	me	demo	an	old	vulnerability:	Wordpress

PANDORA SECURITY LABS Web	Application	Security

Use	Anti-CSRF	Tokens

Anti-csrf tokens	adds	a	unique	token	that	must	be	included	with	the	data	submission.

<%	using(Html.Form("UserProfile",	"SubmitUpdate"))	{	%>
<%=	Html.AntiForgeryToken()	%>	
<!-- rest	of	form	goes	here	-->	

<%	}	%>

The	output	will	be	something	like:

<form	action="/UserProfile/SubmitUpdate"	method="post">	
<input	name="__RequestVerificationToken"	type="hidden"	
value="saTFWpkKN0BYazFtN6c4YbZAmsEwG0srqlUqqloi/fVgeV2ciIFVmelvzwRZpArs"	/>	<!-- rest	of	form	goes	
here	-->

</form>

PANDORA SECURITY LABS Web	Application	Security

Use	Anti-CSRF	Tokens
public	class	UserProfileController :	Controller	{
public	ViewResult Edit()	{	return	View();	

}
[ValidateAntiForgeryToken]
public	ViewResult SubmitUpdate()	{

//	Get	the	user's	existing	profile	data	(implementation	omitted)
ProfileData profile	=	GetLoggedInUserProfile();

//	Update	the	user	object
profile.EmailAddress =	Request.Form["email"];
profile.FavoriteHobby =	Request.Form["hobby"];
SaveUserProfile(profile);

ViewData["message"]	=	"Your	profile	was	updated.";
return	View();

}
}

PANDORA SECURITY LABS Web	Application	Security

Log	Relevant	Data

• Auditable – all	activities	that	affect	user	state	or	balances	are	formally	
tracked

• Traceable – it’s	possible	to	determine	where	an	activity	occurs	in	all
tiers	of	the	application

• High	integrity	– logs	cannot	be	overwritten	or	tampered	by	local	or
remote	users

• Audit	logs	are	legally	protected	– protect	them

PANDORA SECURITY LABS Web	Application	Security

Log	Relevant	Data

Data	from	logs	can	be	used	to	monitor	your	application

Never log	confidential	data!

Have	an	SIEM collect	logs	and	to	help	you	out	monitor	your	
applications

PANDORA SECURITY LABS Web	Application	Security

Never Disclose Information	via	Error	
Messages
• Stack	traces	show	the	inner	workings	of	an	application

• Do	not	give	attackers	clue	about	your	application	(ie.	Invalid	
username	/	password)

• Use	generic	error	messages

• Do	not	send	the	“username”	in	your	password	reset	emails

PANDORA SECURITY LABS Web	Application	Security

Never Disclose Information	via	Error	
Messages
Example with Tomcat:

In	CATALINA_HOME/conf/web.xml	,	add	the	following	entry.

<error-page>	
<exception-type>java.lang.Throwable</exception-type>	
<location>/error.jsp</location>	

</error-page>

PANDORA SECURITY LABS Web	Application	Security

Never Disclose Information	via	Error	
Messages
Example in	.NET:

In	the	Web.config file	at the	application’s root,	add the	following entry.

<configuration>	<compilation	debug="true"/>	</configuration>

Also,	consider having a	generic error page:

<customErrors mode="On"	defaultRedirect="YourErrorPage.htm"	/>

PANDORA SECURITY LABS Web	Application	Security

Never	Disclose Information	via	Error	
Messages

Let	me	demo:	Joomla

PANDORA SECURITY LABS Web	Application	Security

Secure	Your	Components

• Realities:
• We	did	not	write	the	code	for	every	component	in	our	stack
• We	reuse	code,	components,	and	libraries

• Use	dependency	injection	tools	to	manage	libraries
• Maven,	NuGet,	Cocoa	Pods,	Npm

• Software	should	always	be	kept	up	to	date
• Vulnerability	Assessment	/	Penetration	Testing	can	catch	outdated	
components
• Always	check	the	issue	tracker	or	repository	of	a	library/component	
before	using	it

PANDORA SECURITY LABS Web	Application	Security

Secure	Your	Components

• Check	your	component	has	vulnerabilities	by	their	Common	
Vulnerability	Enumeration	(CVE)	
• https://cve.mitre.org/cve/cve.html

PANDORA SECURITY LABS Web	Application	Security

Secure	Your	Components

cve.mitre.org

PANDORA SECURITY LABS Web	Application	Security

Employ	Security	Testing

Use	OWASP Top	10	and	OWASP	Testing	Guide

OWASP	Zap

PANDORA SECURITY LABS Web	Application	Security

Employ	Security	Testing

1. Injection
2. Broken	Authentication	and	Session	Management
3. Cross-Site	Scripting	(XSS)
4. Insecure	Direct	Object	References
5. Security	Misconfiguration
6. Sensitive	Data	Exposure
7. Missing	Function	Level	Access	Control
8. Cross-Site	Request	Forgery	(CSRF)
9. Using	Components	with	Known	Vulnerabilities
10. Unvalidated Redirects	and	Forwards

PANDORA SECURITY LABS Web	Application	Security

Employ	Security	Testing

Not	an	OWASP Fanboi?

Web	App	SecurityPANDORA SECURITY LABS

Employ	Security	Testing

• CWE/SANS	Top	25	Dangerous	Software	Errors

Web	App	SecurityPANDORA SECURITY LABS

Employ	Security	Testing

1. Improper	Neutralization	of	Special	Elements	used	in	an	SQL	Command	('SQL	Injection')
2. Improper	Neutralization	of	Special	Elements	used	in	an	OS	Command	('OS	Command	Injection')
3. Buffer	Copy	without	Checking	Size	of	Input	('Classic	Buffer	Overflow')
4. Improper	Neutralization	of	Input	During	Web	Page	Generation	('Cross-site	Scripting')
5. Missing	Authentication	for	Critical	Function
6. Missing	Authorization
7. Use	of	Hard-coded	Credentials
8. Missing	Encryption	of	Sensitive	Data
9. Unrestricted	Upload	of	File	with	Dangerous	Type
10. Reliance	on	Untrusted	Inputs	in	a	Security	Decision
11. Execution	with	Unnecessary	Privileges
12. Cross-Site	Request	Forgery	(CSRF)
13. Improper	Limitation	of	a	Pathname	to	a	Restricted	Directory	('Path	Traversal')

Web	App	SecurityPANDORA SECURITY LABS

Employ	Security	Testing

14. Download	of	Code	Without	Integrity	Check
15. Incorrect	Authorization
16. Inclusion	of	Functionality	from	Untrusted	Control	Sphere
17. Incorrect	Permission	Assignment	for	Critical	Resource
18. Use	of	Potentially	Dangerous	Function
19. Use	of	a	Broken	or	Risky	Cryptographic	Algorithm
20. Incorrect	Calculation	of	Buffer	Size
21. Improper	Restriction	of	Excessive	Authentication	Attempts
22. URL	Redirection	to	Untrusted	Site	('Open	Redirect')
23. Uncontrolled	Format	String
24. Integer	Overflow	or	Wraparound
25. Use	of	a	One-Way	Hash	without	a	Salt

PANDORA SECURITY LABS Web	Application	Security

We	Ensure	Website	Security

www.webranger.io

Securing	Your	Websites	Through	WebRanger

WebRanger

INTELLIGENCE
DETECTIONTHR T &

Securing	Your	Website	with	WebRangerWebRanger

Securing	Your	Website	with	WebRangerWebRanger

1.	Awareness	is	key
Awareness	is	the	greatest agent for	change	and	action.

Securing	Your	Website	with	WebRangerWebRanger

Awareness	is	the	greatest agent for	change	and	action.

Securing	Your	Website	with	WebRangerWebRanger

2.	Access	control	and	performance
WAF &	CDN to	provide	access	control	and	performance	boost	to	your	site

Securing	Your	Website	with	WebRangerWebRanger

Web	Application	Firewall	(WAF)	to	block threats	accessing	your	website

Securing	Your	Website	with	WebRangerWebRanger

3.	Encrypted	communication
Ensuring your	users	that	you	are	communicating	securely with	them

Securing	Your	Website	with	WebRangerWebRanger

Get	your	FREE SSL	certificate	to	enable	you	site	to	utilize	HTTPS

WebRanger
Web Application Security
Web Application Security by Pandora
Security Labs that protects your web app
using all best defensive solutions in 1:
WAF + Threat Analytics + 24x7 Analysts.

PEOPLE
SECURITY
ANALYSTS

PROCESS
THREAT

ANALYTICS

PRODUCT
ANALYTICS
WAF	&	CDN

SSL

Securing	Your	Website	with	WebRangerWebRanger

FREE

How	does	WebRanger
work	to	protect	your	
website?

1. Attackers	attack	your	website 2.	WebRanger identifies	anomaly	and
sends	data	to	the	analytics	system

3.	The	analytics	system	correlates	
data	and	sends	the	alerts	to	SOC

4.	The	SOC	determines	if	alert	is
a	true	alert	and	informs	the	client

6.	True	alerts	are	then	communicated	
to	the	client	either	via	phone	or	email

7.	Client	views	WebRanger Console	
for	the	alerts	and	attacks	resolved

5.	Pandora	SOC	commands	the	WAF	to	
block	the	attack

8.	Attacks	with	same	patterns	
are	blocked

WebRanger

Analytics	System Pandora	SOC

Securing	Your	Website	with	WebRangerWebRanger

FREE PAID

Securing	Your	Website	with	WebRangerWebRanger

We	Ensure	Website	Security

WebRanger.io
Sign	up	for	FREE

Securing	Your	Website	with	WebRangerWebRanger

Expert	advice.	Experience	advantage.

Proactive	Security	Solutions	Through	Cutting-Edge	Research.

Web	Application	Security

www.pandoralabs.net

