
Reverse Engineering
Swift Apps

Michael Gianarakis
Rootcon X 2016

whoami

@mgianarakis

Director of SpiderLabs APAC at Trustwave

SecTalks Organiser (@SecTalks_BNE)

Flat Duck Justice Warrior #ducksec

Motivation
• Seeing more and more Swift being used in apps that we test (fan

boys like me tend to adopt new Apple technology quickly)

• Google is even considering using Swift as a first class language
on Android… (http://thenextweb.com/dd/2016/04/07/google-
facebook-uber-swift/)

• Wanted to dive into some of the key differences with Swift and
look at the challenges with respect to Swift app pen testing

• Focus is on “black box” app pen testing - for a deeper dive into
Swift language RE I recommend Ryan Stortz’s talk at Infiltrate
(http://infiltratecon.com/archives/swift_Ryan_Stortz.pdf)

http://thenextweb.com/dd/2016/04/07/google-facebook-uber-swift/
http://infiltratecon.com/archives/swift_Ryan_Stortz.pdf

How Does Swift Affect Testing?

• Will dive into the detail in the presentation but the
reality is not much in most areas, quite a bit in others?

• Most issues in iOS and OS X apps are due to poor
design decisions or misconfiguration and incorrect
implementation of Apple and third party frameworks
and libraries.

• The main thing that has changed is how you reverse
engineer the application

Quick Overview of
Swift

What is Swift?
• Compiled language created by Apple

• Released publicly in 2014 at WWDC and has seen
multiple revisions since.

• Open source with official implementations for iOS,
OS X and Linux.

• Intended to replace Objective-C eventually

Syntax (just the basics to follow
along)

Syntax (just the basics to follow
along)

Syntax (just the basics to follow
along)

Syntax (just the basics to follow
along)

Types
• All basic C and Objective-C types -> String, Bool,

Int , Float etc.

• Collection Types -> Array, Set, Dictionary

• Optional Types -> works with all types, no more nil
pointers like Objective-C

• Swift is a type safe language

Objective-C Compatibility

• Objective-C compatibility and interoperability

• Uses the same runtime environment

• Still supports C and C++ in the same app but
can’t be called from Swift like Objective-C

• Can allow for some dynamic features and
runtime manipulation

Other Language Features
• Barely scratched the surface

• Structs, Protocols, Extensions, Closures,
Enumerations, Optionals, Generics, Type Casting,
Access Control, Error Handling, Assertions….

• Automatic Reference Counting

• Unicode…

• var 💩 = 💩 💩 💩 💩 💩 ()

Other Language Features

Challenges Reversing
Swift Apps

Challenges
• Less dynamic than Objective-C

• Less flexible than Objective-C in some areas

• Can make it harder to do some of the standard tasks you
would do on a standard app pen test

• Less of an issue now because most Swift apps will include
be mixed with Objective-C

• Limited tooling

• We will explore this in more detail

Challenges
• Rapidly evolving syntax, APIs and features and Apple doesn’t care

too much about breaking changes.

• v1.0 - September 2014

• v1.1 - October 2014

• v1.2 - April 2015

• v2.0 - September 2015 (Open Sourced, Linux)

• v2.2 - March 2016

• v3.0 - Late 2016

Reversing Swift Apps

• Two primary reverse engineering activities when
conducting a “black box” pen test

• Dumping and analysing class information
from the binary

• Retrieving information at runtime using
debuggers, function hooking, tracing etc.

Retrieving Class
Information

Class Dump?
• The most common and easiest way to retrieve

class data from an Objective-C binary is the class-
dump utility

• class-dump-z retrieves class information and
formats to look like the equivalent of an Objective-
C header file

• Usually one of the first things you do when looking
at an app

Class Dump?

Class Dump?

What next?

• So class-dump-z doesn’t work with Swift binaries :(

• Now what?

• Let’s start diving into the binary

Symbol Table
• What do we get if we dump the symbol table?

Symbol Table

• What if we look for something we know is in the
binary?

• nm -gUj rootcon-demo | grep printDuckType

Symbol Table

• What if we look for something we know is in the
binary?

Name Mangling
• Looks promising but it’s a far cry from the output

of class-dump and is kind of hard to make out

• Swift stores metadata about a function in it’s
symbols in the process “mangling” the name.

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Class name
with length

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Class name
with length

Function name
with length

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Class name
with length

Function name
with length

Function
attribute

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Class name
with length

Function name
with length

Function
attribute

Parameters

Name Mangling
__TFC12rootcon_demo4Duck13printDuckTypefT_T_

Indicates it’s a
Swift method

Indicates it’s a
function

Function of a
class

Module name
with length

Class name
with length

Function name
with length

Function
attribute

Parameters

Return Type

Function Attributes
f Normal function

s Setter

g Getter

d Destructor

D Deallocator

c Constructor

C Allocator

Return Types
a Array
b Boolean
c Unicode Scalar

d Double

f Float

i Integer

u Unsigned Integer

Q Implicitly Unwrapped Optional

S String

swift-demangle

• So now we know roughly the way the names are
mangle you could use this to create a script that
“de-mangles” the names

• Apple has already thought of that and includes a
utility called swift-demangle to do just that

swift-demangle

swift-demangle
• With nm and swift-demangle and some shell

scripting you should be able to easily grab the
function signatures from an app

• Should be all you need to get basically the same
information you would from class-dump to start
assessing the app

class-dump-s

• Hacked together script that demangles names and
formats the output to approximate the output of
class-dump

• Written in Swift

Demo

Stripped Binaries

• CAVEAT: If the developer stripped symbols from
the binary then these techniques obviously won’t
work.

• Reverse engineering stripped binaries is a bit
more complicated

Objective-C Compatibility

• Part of the reason it’s much easier to get class
information from Objective-C binaries is because
it’s necessary for the Objective-C runtime to have
that info

• So what happens when you import Objective-C
frameworks or use Objective-C in your app?

Revisiting Class Dump

• The latest branch of class-dump by Steven Nygard
(the original class-dump utility) has limited support
for Swift.

• Need to download and build from source (no
binary release yet)

• https://github.com/nygard/class-dump

https://github.com/nygard/class-dump

Revisiting Class Dump

Demo

Revisiting Class Dump

Revisiting Class Dump

Revisiting Class Dump

Other Options

Other Options
• classdump-dyld (successor to weakclassdump.cy)

• Disassemblers (i.e. Hopper, IDA Pro)

• Necessary for lower level insight into the app

• To demangle Swift function names https://
github.com/Januzellij/hopperscripts

• cycript? frida?

https://github.com/Januzellij/hopperscripts

Function Hooking

Hooking Swift Methods

• Still possible.

• Much easier with in mixed Swift/Objective-C
binaries.

• Can still write tweaks with Mobile Substrate.

Hooking Swift Methods

Hooking Swift Methods
• Hooking getter method (works!)

Hooking Swift Methods
• Hooking setter method (kinda works…)

Hooking Swift Methods

• Certain functions in Swift are inlined and the class
constructor is one of them (which is directly setting
the instance variable)

• So in this case the setter will only be called again
by the top level code.

• If you call from there it works.

Hooking Swift Methods
• Changing the instance variable directly (works but

not a good idea probably)

Wrap Up

Wrap Up
• So not all hope is lost when it comes to your

standard pen test workflows with Swift apps

• A bit more of a pain in the arse if you don’t get
access to the source code

• Most issues in iOS and OS X apps are due to poor
design decisions or misconfiguration and incorrect
implementation of Apple and third party
frameworks and libraries.

Next Steps
• Improve the class-dump-s script :)

• Remove dependency on swift-demagle

• Ivars, stripped binaries?

• Runtime inspection

• cycript works but not as straightforward as with Objective-C

• LLDB works well if you are familiar with it

• Will hopefully write a blog post soon

Q&A?

