Reverse Engineering
Swift Apps

Michael Gianarakis
Rootcon X 2016

% Trustwave*
SpiderLabs’

whoami

@mgianarakis
Director of SpiderLabs APAC at Trustwave
SecTalks Organiser (@SecTalks_BNE)

Flat Duck Justice Warrior #ducksec

% Trustwave-
SpiderLabs’

Motivation

Seeing more and more Swift being used in apps that we test (fan
boys like me tend to adopt new Apple technology quickly)

Google is even considering using Swift as a first class language
on Android... (http://thenextweb.com/dd/2016/04/07/google-
facebook-uber-swift/)

Wanted to dive into some of the key differences with Swift and
look at the challenges with respect to Swift app pen testing

Focus is on “black box” app pen testing - for a deeper dive into
Swift language RE | recommend Ryan Stortz's talk at Infiltrate
(http://infiltratecon.com/archives/switt Ryan Stortz.pdf

) % Trustwave-
SpiderLabs’

http://thenextweb.com/dd/2016/04/07/google-facebook-uber-swift/
http://infiltratecon.com/archives/swift_Ryan_Stortz.pdf

How Does Swift Affect Testing?

« Will dive into the detail in the presentation but the
reality is not much in most areas, quite a bit in others?

* Mostissues in iOS and OS X apps are due to poor
design decisions or misconfiguration and incorrect
implementation of Apple and third party frameworks
and libraries.

* The main thing that has changed is how you reverse
engineer the application

% Trustwave-
SpiderLabs’

Quick Overview of
Swift

What is Swift?

Compiled language created by Apple

Released publicly in 2014 at WWDC and has seen
multiple revisions since.

Open source with official implementations for iOS,
OS X and Linux.

Intended to replace Objective-C eventually

% Trustwave-
SpiderLabs’

Syntax (just the basics to follow
along)

// Variables and Constants

"immutable value"
"mutable value"

let constant
var variable

// Type Annotation

let constantWithType: String = "Swift infers types but can be explicit"

% Trustwave-
SpiderLabs’

Syntax (just the basics to follow
along)

class Duck {

var duckType: String // Property
var name: String // Property
var owner: String = "Owner" // Property w/ default value

// Initilisation

init(duckType: String, name: String) {
self.duckType = duckType
self.name = name

}

// Class Methods

class func quack() {
print("Quack")

}

% Trustwave-
SpiderLabs’

Syntax (just the basics to follow
along)

// Instance Methods
func printDuckType () {
print("Your duck type 1is \(self.duckType)")

}

}
func isDuckAtRootcon(duckName name: String) -> Bool {
if name == "Xntrik" {
return false
} else {

return true

}

% Trustwave-
SpiderLabs’

Syntax (just the basics to follow
along)

import Foundation

var flatDuck = Duck(duckType: "Flat", name: "Richo")
var uprightDuck = Duck(duckType: "Upright", name: "Xntrik")

// Calling class method
Duck.quack()

// Calling instance method
flatDuck.printDuckType()
flatDuck.changeOwner ("Snare")

print(flatDuck.owner)

uprightDuck.printDuckType()
uprightDuck.isDuckAtRootcon(duckName: "Xntrik")

% Trustwave-
SpiderLabs’

Types
All basic C and Objective-C types -> String, Bool,
Int, Float etc.
Collection Types -> Array, Set, Dictionary

Optional Types -> works with all types, no more nil
pointers like Objective-C

Switt is a type safe language

% Trustwave-
SpiderLabs’

Objective-C Compatibility

* Objective-C compatibility and interoperability
» Uses the same runtime environment

o Still supports C and C++ in the same app but
can't be called from Swift like Objective-C

e Can allow for some dynamic features and
runtime manipulation

% Trustwave-
SpiderLabs’

Other Language Features

* Barely scratched the surtace

e Structs, Protocols, Extensions, Closures,
Enumerations, Optionals, Generics, Type Casting,
Access Control, Error Handling, Assertions....

* Automatic Reference Counting

e Unicode...

« var & A8888(0)

% Trustwave-
SpiderLabs’

Other Language Features

S

The Swift
Programming
Language
Swift 2.2 Edition

-

% Trustwave-
SpiderLabs’

Challenges Reversing
Swift Apps

Challenges

* Less dynamic than Objective-C
* Less flexible than Objective-C in some areas

e Can make it harder to do some of the standard tasks you
would do on a standard app pen test

e Less of an issue now because most Swift apps will include
be mixed with Objective-C

« Limited tooling

« We will explore this in more detalil
%Trus_twave@)
SpiderLabs

Challenges

* Rapidly evolving syntax, APls and features and Apple doesn’t care
too much about breaking changes.

* v1.0 - September 2014

* v1.1 - October 2014

* v1.2 - April 2015

e v2.0 - September 2015 (Open Sourced, Linux)
e v2.2 - March 2016

e v3.0 - Late 2016 SO,
%SpiderLabs®

Reversing Swift Apps

* Two primary reverse engineering activities when
conducting a "black box” pen test

 Dumping and analysing class information

from the binary

* Retrieving information at runtime using
debuggers, function hooking, tracing etc.

% Trustwave-
SpiderLabs’

Retrieving Class
Information

Class Dump?

 The most common and easiest way to retrieve
class data from an Objective-C binary is the class-
dump utility

* class-dump-z retrieves class information and

formats to look like the equivalent of an Objective-
C header file

* Usually one of the first things you do when looking

atan a p p %Trustwave@
SpiderLabs’

Class Dump?

@interface PTHOAuthHandler : NSObject
{

NSMutableDictionary *_authDictionary;

+ (id)sharedController;

- (void)handleOAuthURL: (id)argl;
- (void)authenticate: (id)argl completion: (CDUnknownBlockType)arg2;
- (id)init;

@end

% Trustwave-
SpiderLabs’

Class Dump?

2

2

L)

% Trustwave"
SpiderLabs’

What next?

* So class-dump-z doesn’t work with Swift binaries :(
 Now what?

» Let's start diving into the binary

% Trustwave-
SpiderLabs’

Symbol Table

* What do we get if we dump the symbol table?

[Rootcon] nm -gUj rootcon-demo | head -n 20
_NS_Swift_NSCoder_decodeObject
_NS_Swift_NSCoder_decodeObjectForKey
_NS_Swift_NSCoder_decodeObjectOfClassForKey
_NS_Swift_NSCoder_decodeObjectOfClassesForKey
_NS_Swift_NSKeyedUnarchiver_unarchiveObjectWithData
_NS_Swift_NSUndoManager_registerUndoWithTargetHandler
_OBJC_CLASS_$_SwiftObject
_OBJC_CLASS_S__SwiftNativeNSArrayBase
_OBJC_CLASS_S$__SwiftNativeNSDictionaryBase
_OBJC_CLASS_S$__SwiftNativeNSEnumeratorBase
_OBJC_CLASS_S__SwiftNativeNSError
_OBJC_CLASS_S__SwiftNativeNSSetBase
_OBJC_CLASS_S__SwiftNativeNSStringBase
_OBJC_CLASS_S$__TtCs17_SwiftNativeNSSet
_OBJC_CLASS_S$__TtCs18_EmptyArrayStorage
_OBJC_CLASS_S__TtCs19_NSContiguousString
_OBJC_CLASS_S$__TtCs19_SwiftNativeNSArray
_OBJC_CLASS_S__TtCs20_SwiftNativeNSString
_OBJC_CLASS_S__TtCs21_SwiftDeferredNSArray .
_OBJC_CLASS_%__TtCs24_ContiguousArrayStoragel %N$1?USUN8V€“

SpiderLabs’

Symbol Table

* What if we look for something we know is in the
binary?

- nm -gUj rootcon-demo | grep printDuckType

% Trustwave-
SpiderLabs’

Symbol Table

* What if we look for something we know is in the
binary?

[Rootcon] nm -gUj rootcon-demo | grep printDuckType
__TFCl2rootcon_demo4Duckl3printDuckTypefT_T_

__TWoFCl12rootcon_demo4Duckl3print kTypefT_T_

% Trustwave"
SpiderLabs’

Name Mangling

* Looks promising but it’s a far cry from the output
of class-dump and is kind of hard to make out

* Swift stores metadata about a function in it's
symbols in the process “mangling” the name.

% Trustwave-
SpiderLabs’

Name Mangling

__TFC12rootcon_demo4Duck13printDuckTypefT_T_

|

Indicates it's a
Swift method

% Trustwave-
SpiderLabs’

Name Mangling

__TFC12rootcon_demo4Duck13printDuckTypefT_T_

|

Indicates it's a
Swift method

l

Indicates it's a
function

% Trustwave-
SpiderLabs’

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

]

Indicates it's a
Swift method

/|

Indicates it's a
function

l

Function of a
class

% Trustwave* |
SpiderLabs’

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

I

Indicates it'sa Module name
Swift method with length

/|

Indicates it's a
function

l

Function of a
class

% Trustwave-
SpiderLabs’

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

|

Indicates it'sa Module name Class name
Swift method with length with length

/|

Indicates it's a
function

l

Function of a
class

% Trustwave* |
SpiderLabs’

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

| |

Indicates it'sa Module name Class name Function name
Swift method with length with length with length

/|

Indicates it's a
function

l

Function of a
class

% Trustwaver
SpiderLabs’

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

| |

Indicates it'sa Module name Class name Function name
Swift method with length with length with length

v

l ‘ Function

. » attribute
Indicates it's a

function

l

Function of a
class

% Trustwave’
SpiderLabs

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T_

| |

Indicates it'sa Module name Class name Function name
Swift method with length with length with length

v

l ‘ Function
. » attribute
Indicates it's a
function l
l Parameters

Function of a
class

% Trustwave’
SpiderLabs

Name Mangling

TFC12rootcon_demo4Duck13printDuckTypefT_T

| |

Indicates it'sa Module name Class name Function name
Swift method with length with length with length

\4

l ‘ Function
Indicates it's a attribute
function l
l Parameters
Function of a l
class Return Type

% Trustwave’
SpiderLabs

Function Attributes

Normal function

Setter

Getter
Destructor
Deallocator
Constructor

Allocator

% Trustwave-
SpiderLabs’

Return Types

o
b
4
I
v
o

Array

Boolean

Unicode Scalar
Double
Float
Integer
Unsigned Integer
Implicitly Unwrapped Optional
String

Q)

Trustwave®

SpiderLabs’

swift-demangle

* So now we know roughly the way the names are

mangle you could use this to create a script that
"de-mangles” the names

* Apple has already thought of that and includes a
utility called switt-demangle to do just that

% Trustwave-
SpiderLabs’

swift-demangle

[Rootcon] swift-demangle __TFCl2rootcon_demo4Duckl3printDuckTypefT_T_
_TFCl12rootcon_demo4Duckl3printDuckTypefT_T_ ---> rootcon_demo.Duck.printDuckType () -> ()
[Rootcon] swift-demangle -compact __TFCl2rootcon_demo4Duckl3printDuckTypefT_T_

rootcon_demo.Duck.printDuckType () -> ()
[Rootcon] swift-demangle -compact -simplified __TFCl2rootcon_demo4Duckl3printDuckTypefT_T_

Duck.printDuckType() -> ()
[Rootcon] swift-demangle -expand __TFCl2rootcon_demo4Duckl3printDuckTypefT_T_
Demangling for _TFCl2rootcon_demo4Duckl3printDuckTypefT_T_
kind=Global
kind=Function
kind=Class
kind=Module, text="rootcon_demo"
kind=Identifier, text="Duck"
kind=Identifier, text="printDuckType"
kind=Type
kind=UncurriedFunctionType
kind=ArgumentTuple
kind=Type
kind=NonVariadicTuple
kind=ReturnType
kind=Type
kind=NonVariadicTuple
_TFC12rootcon_demo4Duckl3printDuckTypefT_T_ ---> rootcon_demo.Duck.printDuckType () -> ()

% Trustwave-
SpiderLabs’

swift-demangle

* With nm and switt-demangle and some shell

scripting you should be able to easily grab the
function signatures from an app

* Should be all you need to get basically the same
information you would from class-dump to start
assessing the app

% Trustwave-
SpiderLabs’

class-dump-s

* Hacked together script that demangles names and

formats the output to approximate the output of
class-dump

e Written in Swift

% Trustwave-
SpiderLabs’

Demo

Stripped Binaries

 CAVEAT: It the developer stripped symbols from
the binary then these techniques obviously won't

work.

* Reverse engineering stripped binaries is a bit
more complicated

% Trustwave-
SpiderLabs’

Objective-C Compatibility

Part of the reason it's much easier to get class
information from Objective-C binaries is because
it's necessary for the Objective-C runtime to have
that info

* So what happens when you import Objective-C
frameworks or use Objective-C in your app?

% Trustwave-
SpiderLabs’

Revisiting Class Dump

* The latest branch of class-dump by Steven Nygard

(the original class-dump utility) has limited support
for Swift.

* Need to download and build from source (no
binary release yet)

* https://github.com/nygard/class-dump

% Trustwave-
SpiderLabs’

https://github.com/nygard/class-dump

Revisiting Class Dump

class HITB {
var howGreatIsHITB = 7.5

func isClassDumpGoingToWork(name: String) -> Bool {
return false

}
func isClassDumpGoingtoWorkWithObjCRuntime(runtime name: String) -> Bool {
if name == "0ObjC" {
return true
} else {

return false

}

% Trustwave-
SpiderLabs’

Demo

Revisiting Class Dump

2 2

L)

% Trustwave"
SpiderLabs’

Revisiting Class Dump

class HITB : NSObject {
var howGreatIsHITB = 7.5

func isClassDumpGoingToWork(name: String) -> Bool {
return false

}
func isClassDumpGoingtoWorkWithObjCRuntime(runtime name: String) -> Bool {
if name == "ObjC" {
return true
} else {

return false

}

% Trustwave-
SpiderLabs’

Revisiting Class Dump

% Trustwave’
SpiderLabs

Other Options

Other Options

* classdump-dyld (successor to weakclassdump.cy)

* Disassemblers (i.e. Hopper, IDA Pro)
* Necessary for lower level insight into the app

* To demangle Swift function names https://

github.com/Januzellij/hopperscripts

o cycript? frida?
%Trustwave@
SpiderLabs’

https://github.com/Januzellij/hopperscripts

Function Hooking

Hooking Swift Methods

 Still possible.

* Much easier with in mixed Swift/Objective-C
binaries.

e Can still write tweaks with Mobile Substrate.

% Trustwave-
SpiderLabs’

Hooking Swift Methods

class RootconHook {
var howGreatIsRootcon: Int

init() {
howGreatIsRootcon = 5

}

% Trustwave-
SpiderLabs’

Hooking Swift Methods

* Hooking getter method (workst!)

int (xhowGreatIsRootcon) (id,self);

MSHook (int, howGreatIsRootcon, 1id self) {
return 10;

}

%ctor {
howGreatIsRootcon = (int (x)(id, self)) dlsym(RTLD_DEFAULT, "_TFCO9swifttest7Rootconl7howGreatIsRootconSi");
MSHookFunction(howGreatIsRootcon, MSHake(howGreatIsRootcon));

}

% Trustwave-
SpiderLabs’

Hooking Swift Methods

* Hooking setter method (kinda works...)

int (xhowGreatIsRootcon) (id newValue, 1id self);

MSHook (void, setHowGreatIsRootcon, 1int newValue) {
TsetHowGreatIsRootcon(10, §elf);

}

%ctor {
setHowGreatIsRootcon = (void (%) (int newValue, self)) dlsym(RTLD_DEFAULT,
" _TFC9swifttest7Rootconl7howGreatIsRootconSi");
MSHookFunction(setHowGreatIsRootcon, MSHake(setHowGreatIsRootcon))

% Trustwave-
SpiderLabs’

Hooking Swift Methods

e Certain functions in Swift are inlined and the class
constructor is one of them (which is directly setting
the instance variable)

* So in this case the setter will only be called again
by the top level code.

* |t you call from there it works.

% Trustwave-
SpiderLabs’

Hooking Swift Methods

* Changing the instance variable directly (works but
not a good idea probably)

int (*howGreatIsRootcon)(id newValue, id self);

MSHook (void, setHowGreatIsRootcon, int newValue) {
MSHookIvar<int>(self, "howGreatIsRootcon") = ld;

}
%ctor {
setHowGreatIsRootcon = (void (x) (int newValue, self)) dlsym(RTLD_DEFAULT,
" _TFCO9swifttest7Rootconl7howGreatIsRootconSi");
MSHookFunction(setHowGreatIsRootcon, MSHake(setHowGreatIsRootcon));
}

% Trustwave-
SpiderLabs’

Wrap Up

Wrap Up

* So not all hope is lost when it comes to your
standard pen test workflows with Swift apps

* A bit more of a pain in the arse if you don't get
access to the source code

* Mostissues in iOS and OS X apps are due to poor
design decisions or misconfiguration and incorrect
implementation of Apple and third party

frameworks and libraries.
%Trus_twave@
SpiderLabs’

Next Steps

* Improve the class-dump-s script :)
 Remove dependency on swift-demagle
o |vars, stripped binaries?
* Runtime inspection
 cycript works but not as straightforward as with Objective-C
e LLDB works well if you are familiar with it

o Will hopefully write a blog post soon %T,.ustwa\,@
SpiderLabs’

% Trustwave*
SpiderLabs’

