
REMOTE CODE EXECUTION
VIA JAVA NATIVE DESERIALIZATION



Introduction

• No formal security training
• Software industry since 1999
• Focus on security since 2011
• Worked for BOM, Red Hat, 

Console, SpiderLabs
• Ask me about Best Korea
• Free solo climber (i.e. insane)
• I love finding new 0day

and popping shells



Outline

• Java (de)serialization
• RCE via XML deserialization
• RCE via native deserialization
• RCE via XML <-> binary mapping vector
• Other InvocationHandlers?
• “Property-oriented programming” and gadgets
• Where lies the vulnerability?



Java (de)serialization

• Java has multiple serialization implementations
• XML serialization: XXE and RCE possible in multiple 

implementations
• Native serialization: binary data format, with RCE possible 

depending on what’s on the classpath
• Dozer, Kryo, and other frameworks
• Common thread: don’t deserialize untrusted input (duh!)



RCE – XML deserialization

• Alternative XML-based serialization formats
• JAXB is the standard (possible same vector as native)
• Other XML serialization libraries exist, and have exposed security 

issues leading to RCE
• These are commonly used by big applications and XML REST API 

frameworks
• We’ll look at just two examples: XMLDecoder and XStream
• NOT reliant on classes implementing Serializable



XMLDecoder

• XMLDecoder’s XML format can represent a series of methods that 
will be called to reconstruct an object

• If XMLDecoder is used to deserialize untrusted input, arbitrary code 
can be injected into the XML

• Live demo: Restlet CVE-2013-4221. Fixed by removing vulnerable 
functionality.



XStream

• Reflection-based deserialization
• Has a special handler for dynamic proxies (implementations of 

interfaces)
• Spring OXM, Sonatype Nexus, Jenkins, etc. affected



XStream

• Attackers can provide XML representing a dynamic proxy class, 
which implements the interface of a class the application might 
expect

• Dynamic proxy implements an EventHandler that calls arbitrary 
code when any members of the deserialized class are called



XStream in Jenkins

• Jenkins XML API uses XStream to deserialize input
• Access to XML API => RCE (but not such a huge deal)
• Live demo: Jenkins
• Solution: blocked DynamicProxyConverter in XStream wrapper 

class
• Upstream solution: whitelisting, with dynamic proxies excluded by 

default
• More information: https://securityblog.redhat.com/2014/01/23/java-

deserialization-flaws-part-2-xml-deserialization/



RCE – binary deserialization

• Java contains a native serialization mechanism, that converts 
objects to binary data

• When deserializing, the readObject() and readResolve() methods of 
the class will be called

• This can lead to vulnerabilities if a class on the classpath has 
something exploitable in readObject() or readResolve()

• How can an attacker provide binary serialized objects?



RCE – binary deserialization

• Serialization is used as a format for transferring objects over 
networks, e.g. via REST APIs

• Example #1: RichFaces state (CVE-2013-2165, Takeshi Terada, 
MBSD)

• Example #2: Restlet REST framework
• Live demo: Restlet PoC
• What kind of issue could exist in readResolve() or readObject() that 

would be exploitable?



CVE-2011-2894: Spring AOP

• Discovered by Wouter Coekaerts, first known vulnerability in this 
category

• Serializable InvocationHandler exposed
• Allows mapping a proxy to ANY method call on the proxy interface
• Similar exploit to EventHandler, but more complex setup of the 

serialized object graph
• More information: http://www.pwntester.com/blog/2013/12/16/cve-

2011-2894-deserialization-spring-rce/



Commons-fileupload

• Component to simplify file uploads in Java apps
• DiskFileItem class implements readObject()
• The readObject method creates a tmp file on disk:

tempFile = new File(tempDir, tempFileName);
• tempDir is read from the “repository” private attribute of the class, 

exposing a poison null byte flaw (file-writing code is native, now 
patched in the JDK)

• An attacker can provide a serialized instance of DFI with a null-
terminated full path value for the repository attribute: /path/to/file\0

• Commons-fileupload code embedded in Tomcat



Restlet + DFI

• Upload a JSP shell to achieve RCE
• Solution #1: don’t deserialize untrusted content
• Solution #2: don’t introduce flaws in readObject() or readResolve()
• Solution #3: type checking with look-ahead deserialization (Pierre 

Ernst): http://www.ibm.com/developerworks/java/library/se-
lookahead/index.html

Or notsoserial: https://tersesystems.com/2015/11/08/closing-the-
open-door-of-java-object-serialization/



Dozer XML <-> Binary Mapper

• Uses reflection-based approach to type conversion
• Used by e.g. Apache Camel to map types
• If used to map user-supplied objects, then an attacker can provide a 

dynamic proxy
• There must either be an object being mapped to with a getter/setter 

method that matches a method in an interface on the server 
classpath, or a manual XML mapping that allows an attacker to 
force the issue

• InvocationHandler must implement Serializable interface
• EventHandler does not implement it



Dozer CVE-2014-9515

• Wouter Coekaerts reported a serializable InvocationHandler in older 
versions of Spring AOP (CVE-2011-2894)

• Using Alvaro Munoz’s CVE-2011-2894 exploit, I was able to develop 
a working Dozer exploit. It is only exploitable if all the 
aforementioned conditions are met, and vulnerable Spring JARs are 
on the classpath.

• Live demo: Dozer RCE 
https://github.com/pentestingforfunandprofit/research/tree/master/do
zer-rce

• Reported upstream in Dec 2014, no response: 
https://github.com/DozerMapper/dozer/issues/217



Other InvocationHandlers

• Any common component is useful, but in the JDK itself means more 
universally exploitable

• CompositeDataInvocationHandler: forwards getter methods to a 
CompositeData instance. No use.

• Three other InvocationHandlers in Java 7/8:
– CompositeDataInvocationHandler
– MBeanServerInvocationHandler
– RemoteObjectInvocationHandler



MBeanServletInvocationHandler

• Proxy to an MBean on the server. Potentially useful, e.g. if MBeans
used by the JBoss Worm are present (allowing RCE)

• Problem 1: attacker must specify correct JMX URL
– Solution 1: JMX is exposed locally on port 1099
– Solution 2: Brute for JMX URL via Java PID

• Problem 2: attacker cannot control code that is run for any method 
call, only specific method calls

• EventHandler exploits work no matter which method is invoked on 
the proxy object. MBeanServerInvocationHandler simply calls the 
method of the same name on the MBean.



RemoteObjectInvocationHandler

• Proxy to a remote object exported via RMI
• Problem 1: attacker must know details of a remote object exported 

to the server
– Solution: JMX registry is exposed via RMI. If JMX is exposed 

locally on port 1099, the attacker could craft an object instance 
that points to the JMX RMI URL

• Problem 2: attacker cannot control code that is run for any method 
call, only specific method calls

• Future work: look for more potentially exploitable 
InvocationHandlers in other libraries



Property-oriented programming

• Instantiate a complex object graph whose root node is serializable
• Similar to ROP, exploit conditions in classes on the classpath so 

deserialization of the object graph lands in execution of arbitrary 
code

• Shout outs to Stefan Esser for considering this in PHP first
• http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-

pickles slide 45 onward



Gadget: commons-collection

• Serializable InvocationHandler in a library that is almost universally 
on the classpath

• Presented at AppSecCali: 
http://www.slideshare.net/codewhitesec/exploiting-deserialization-
vulnerabilities-in-java-54707478

• FoxGlove reported multiple vectors for untrusted deserialization in 
JBoss, WebSphere, Jenkins, WebLogic, etc. 
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-
websphere-jboss-jenkins-opennms-and-your-application-have-in-
common-this-vulnerability/



Tools & future research

• Ysoserial for finding flaws and aggregating payloads
• Look-ahead deserialization tools:

– PoC by Pierre Ernst @ IBM
– Notsoserial
– Serialkiller

• Is JAXB similarly exploitable?
• More gadgets, more deserialization vectors
• Gadget entirely in the JDK would be awesome – and Wouter has 

delivered: 
http://wouter.coekaerts.be/2015/annotationinvocationhandler



Where lies the vulnerability?

• When at Red Hat, I assigned CVEs to vulnerable classes, and 
publicly stated:





Where lies the vulnerability

• I was wrong (shock, horror!)
• The vulnerability lies in the application performing deserialization of 

untrusted data without look-ahead type validation



Questions?


