
CERTIFICATE	BASED	
STRONG	CLIENT	

AUTHENTICATION	AS	A	
REPLACEMENT	FOR	

USERNAME/PASSWORD
LAWRENCE	E.	HUGHES

CTO,	SIXSCAPE COMMUNICATIONS

FOR	ROOTCON X,	SEPT	2016	

THE	PROBLEM	WITH	USERNAME/PASSWORD	
AUTHENTICATION	- USERNAMES

• Usernames	are	fairly	easy	to	create	and	remember,	but	if	they	are	not	qualified	with	an	
Internet	domain	name	(like	E-mail	usernames)	and	they	are	for	a	popular	service	(e.g.	Skype)	
it	can	be	difficult	to	get	your	preferred	username.	You	can	wind	up	with	unwieldy	names	like	
larry4363.	If	the	username	includes	an	Internet	domain	name	(e.g.	larry@hughesnet.org)	
then	you	can	greatly	reduce	the	problem	of	collision	with	other	users	(especially	if	you	can	
use	any	domain	name).	You	need	only	find	a	userid that	is	unique	within		a	specific	domain.	

• That	being	said,	even	though	you	can	easily	change	your	password,	changing	your	username	
may	be	very	difficult	or	impossible	with	most	online	services,	especially	if	you	want	continuity	
with	past	usage	of	that	service.	And	your	username	may	be	exposed	(e.g.	in	mail	headers).

THE	PROBLEM	WITH	USERNAME/PASSWORD	
AUTHENTICATION	- PASSWORDS

• The	real	problem	is	with	passwords,	and	with	the	combination	of	a	username	and	a	password	
for	authentication	to	an	online	service.	This	scheme	is	pretty	much	completely	broken.	We	
can’t	use	it	anymore.

• Humans	are	notoriously bad	at	coming	up	with	strong,	but	easy-to-remember	passwords.	And	
in	theory	you	should	use	a	different	password	on	every online	service,	or	if	a	hacker	cracks	
your	credentials	on	one	service,	they	will	try	it	on	many	others,	often	with	success.

• To	complicate	it	further,	you	should	change	your	passwords	periodically	(and	some	systems	
force	this,	and	will	even	keep	a	tail	of	most	recently	used	passwords,	which	you	can’t	reuse),	
making	it	even	more	difficult	to	keep	track	of	them.

THE	PROBLEM	WITH	USERNAME/PASSWORD	
AUTHENTICATION	- HACKING
• I	can	hack	into	an	online	service	and	grab	their	username/password	database.	A	good	site	will	

have	protected	that	with	hashing	and	salting	(e.g.	PBKDF2)	as	described	here:
https://crackstation.net/hashing-security.htm

• All	that	hashing	and	salting	will	just	slow	me	down.	It	won’t	stop	me	from	harvesting	all	those	
credentials.	This	has	happened	to	Target	and	many	other	online	vendors.	As	long	as	
username/password	authentication	is	used,	there	is	no	real	defense	against	mass	credential	
harvesting.

• If	you	send	your	username	and	password	in	clear	text,	I	can	see	with	WireShark!
• I	once	created	a	hacking	tool	that	took	the	output	of	a	sniffer,	extracted	all	packets	for	port	

110	(POP3)	and	143	(IMAP),	put	them	together	like	TCP,	and	wrote	them	to	a	file.	I	left	it	
running	in	our	office	all	day,	and	wound	up	with	a	list	of	everyone’s	email,	including	their	
usernames	and	passwords.	We	switched	to	POP3S	and	IMAPS	immediately.

THE	PROBLEM	WITH	USERNAME/PASSWORD	
AUTHENTICATION	- CRACKING

• You	can	download	the	10,000	most	commonly	used	passwords	from	various	places.	Some	
97%	of	all	user-generated	passwords	will	be	among	the	first	1,000	of	those.	This	helps	
cracking	hashed	passwords,	even	with	salt.

• If	my	clever	online	system	forces	you	to	choose	a	really	complex	password	(at	least	one	upper	
case,	one	lower	case,	one	number	and	one	special	character,	no	part	of	your	username,	no	
English	words,	no	recently	used	passwords,	etc),	then	chances	are	good	you	will	never	be	
able	to	remember	an	acceptable	password	and	will	write	it	down.	Probably	on	a	PostIt note	
under	your	keyboard.	This	is	an	unusually bad	idea.

• The	strength	of	a	password	is	almost	entirely	determined	by	its	length,	not	its	complexity.	The	
strength	of	a	password	is	proportional	to	m	to	the	n-th where	m	is	the	size	of	the	charset	(e.g.	
26	for	only	lower	case,	52	for	upper	or	lower	case)	and	n	is	the	length	of	the	password.

THE	PROBLEM	WITH	USERNAME/PASSWORD	
AUTHENTICATION	– KEYBOARD	LOGGING

• I	can	easily	put	a	Trojan	Horse	on	your	computer	and	watch	everything	you	are	typing.	This	is	
difficult	(but	not	impossible)	to	scale	up	to	millions	of	users.

• You	can	create	incredibly strong	passwords	by	taking	two	names	or	English	words	and	
separating	them	with	a	digit	or	special	character.	If	you	slightly	misspell	one	or	both	words,	
that	makes	it	even	more	difficult	to	crack.	Try	to	exceed	14	characters	total.	For	example,	
Raspberri*Sherbet – is	very strong,	and	yet	that	is	really	easy	to	memorize.

• How	strong?	The	password	“y6&p2G”	has	a	strength	of	72	to	the	6th	(about	1.39	E+11).	The	
password	“Raspberri*Sherbet”	has	a	strength	of	62	to	the	17th	(about	2.95	E+30),	which	is	
some	21	quintillion	times	stronger.	The	complex	but	short	one	can	be	cracked	in	seconds.

• But	if	I’m	watching	your	keystrokes	with	a	logger,	even	if	you	use	a	strong	password	like	that,	
and	you	are	connecting	to	a	site	with	TLS	v1.2	using	RSA2048	bit	and	AES256,	you	are	still	
dead	meat.	I’ve	got	your	credentials.	All	your	bases	are	belong	to	me!

SO	WHAT	IS	THE	SOLUTION?

• The	solution	involves	cryptography.	And	not	just	any	old	cryptography	(like	AES),	but	
asymmetric	key (public/private	key)	cryptography.	Like	RSA	or	ECC.	The	fun	stuff.	The	stuff	
that	makes	SSL/TLS	work.	The	same	stuff	that	makes	S/MIME	work.	And	digital	certificates.	
And	PKI.	It’s	actually	part	of	SSL/TLS	since	SSL	3.0	(surprise!)

• Symmetric	key	cryptography	uses	the	same	key	to	encrypt	and	decrypt.	Intuitive.	
• Asymmetric	key	cryptography	uses	a	matched	pair	of	keys,	a	public	key and	a	private	key.	You	

encrypt	with	either	of	them,	but	you	can	only	decrypt	with	the	other key	of	the	pair	(really
non-intuitive).

• PKI	embeds	the	public key	in	a	digital	certificate	that	has	info	needed	to	verify	it’s	really	the	
public	key	of	the	person	it	claims	to	be	for.	And	publishes	it	in	a	directory	for	anyone	to	use.	
The	private key	is	best	kept	in	a	crypto	token	and	never	even	loaded	into	your	computer.

SO	HOW	DOES	SSL/TLS	WORK?

• There	are	three	phases	in	an	SSL/TLS	handshake.	
• 1	– the	server	authenticates	itself	to	the	client	(I’m	really	the	server	for	amazonwomen.com)

• 2	– the	client	authenticates	itself	to	the	server	(I’m	really	Lawrence	Hughes from	Sixscape)

• 3	– the	client	creates	a	symmetric	session	key	and	securely	shares	it	with	the	server,	which	will	be	
used	to	encrypt	everything	after	the	handshake,	in	both	directions

• Today,	the	client	to	server	authentication	usually	happens	after the	TLS	handshake,	in	the	
encrypted	tunnel,	using	username/password	authentication.	We	want	to	use	the	real phase	2	
which	happens	during the	TLS	handshake,	before	the	application	protocol	begins.	Not	many	
people	use	that	today.	It’s	been	around	since	SSL	3.0.	But	it	requires	Client	Digital	Certificates.

WHAT	IS	A	SERVER	DIGITAL	CERTIFICATE?

• You	are	probably	familiar	with	SSL	server	certificates.	You	can	buy	them	from	online	CA’s	like	
DigiCert,	or	get	them	for	free	from	the	Encrypt	Everything	project.	Or	create	your	own	with	
OpenSSL	(those	are	not	trusted,	or	“public	hierarchy”	certs	– they	are	like	counterfeit	money).

• It	is	a	digital	document	that	binds	the	server’s	public	key	to	identifying	information,	like	the	
server’s	FQDN	(www.amazonwomen.com);	who	issued	the	server	cert	(digicert.com);	an	
expiration	date;	and	various	other	information.	The	standard	involved	is	X.509	v3	(RFC	5280).	That	
binding	is	done	by	the	CA	(a	trusted	third	party)	digitally	signing	the	certificate.

• Using	the	information	in	the	cert	I	can	check	if	it	is	trusted	(it	chains	up	to	a	trusted	root	cert);	
whether	it	is	currently	valid	(or	has	expired);	and	its	revocation	status	(whether	the	issuing	
authority	has	revoked	it	or	not).	Anyone	presented	with	a	server	cert	should	check	all	of	those	
things.

• A	secure	server	only	needs	one	server	cert	for	any	number	of	users.

Demo of Server Certificate

HOW	DOES	SSL/TLS	PHASE	1	WORK?

• At	the	start	of	the	TLS	handshake,	the	client	and	server	negotiate	various	things.

• Then	the	server	sends	its	Server	Certificate	to	the	client.

• The	client	checks	the	server	cert	trust,	validity	and	revocation	status	(abort	if	failed)

• The	client	creates	a	short	random	string,	encrypts	it	with	the	server’s	public	key	(from	the	
server	cert)	and	sends	the	result	to	the	server	as	a	crypto challenge

• The	server	decrypts	the	crypto	challenge	with	its	private	key	and	returns	the	result	to	the	
client	as	the	challenge	response

• If	the	challenge	response	matches	the	original	string,	that	proves	the	server	has	the	private	
key	corresponding	to	the	public	key	in	the	server	cert,	without	actually	revealing	that	key

• That	gives	you	strong	server	to	client	authentication	(Phase	1	success)

Demo of Crypto challenge

WHAT	IS	A	CLIENT	DIGITAL	CERTIFICATE?

• A	Client	Certificate	is	like	a	Server	Certificate,	but	it	has	different	information	associated	with	
the	public	key.

• It	is	a	digital	document	that	binds	the	client’s	public	key	to	identifying	information,	like	the	
user’s	name	and	email	address;	who	issued	the	server	cert	(Comodo);	an	expiration	date;	and	
various	other	information.	The	standard	involved	is	still	X.509	v3	(RFC	5280).	That	binding	is	
done	by	the	CA	(a	trusted	third	party)	digitally	signing	the	certificate.

• Using	the	information	in	the	cert	I	can	check	if	it	is	trusted	(it	chains	up	to	a	trusted	root	
cert);	whether	it	is	currently	valid	(or	has	expired);	and	its	revocation	status	(whether	the	
issuing	authority	has	revoked	it	or	not).	Anyone	presented	with	a	client	cert	should	check	all	
of	those	things.

• Every	user of	a	secure	server	requires	a	distinct	client	cert	that	identifies	them.	WHOA.

Demo of Client Certificate

HOW	DOES	SSL/TLS	PHASE	2	WORK?

• If	SCA	is	configured,	after	Phase	1	is	complete,	the	server	asks	the	client	for	a	client	cert.

• The	client	lets	the	user	select	a	client	cert	from	the	available	certs	and	sends	it	to	the	server

• The	server	checks	the	client	cert	trust,	validity	and	revocation	status	(abort	if	failed)

• The	server	creates	a	short	random	string,	encrypts	it	with	the	client’s	public	key	(from	the	
client	cert)	and	sends	the	result	to	the	client	as	a	crypto	challenge

• The	client	decrypts	the	crypto	challenge	with	its	private	key	and	returns	the	result	to	the	
server	as	the	challenge	response

• If	the	challenge	response	matches	the	original	string,	that	proves	the	client	has	the	private	
key	corresponding	to	the	public	key	in	the	client	cert,	without	actually	revealing	that	key

• That	gives	you	strong	client	to	server	authentication	(Phase	2	success)

HOW	DOES	SSL/TLS	PHASE	3	WORK?

• After	all	the	authentication	is	done,	the	client	creates	a	symmetric	session	key	(and	IV)	for	the	
negotiated	symmetric	key	algorithm

• The	client	then	encrypts	the	symmetric	key	and	IV	with	the	server’s	public	key	(from	its	
server	cert)	and	sends	it	to	the	server

• The	server	decrypts	the	encrypted	session	key	and	IV	with	its	private	key

• Voila	- A	symmetric	session	key	has	been	securely	shared	– Phase	3	Success

• After	that	everything	sent	by	either	end	is	encrypted	by	that	key,	and	the	other	end	receives	
the	encrypted	traffic	and	decrypts	it	with	the	same	symmetric	session	key

• A	new	session	key	is	generated	for	every	SSL/TLS	session	– it	can	even	be	periodically	rekeyed

Demo of strong client auth

SO	HOW	DO	I	GET	A	CLIENT	CERT?

• Some	CA’s	also	provide	client	certs,	like	Comodo,	DigiCert,	etc

• There	are	free	ones	that	only	authenticate	your	e-mail	address

• There	are	ones	for	sale	that	validate	your	name,	e-mail	address,	company,	etc

• Sixscape has	created	a	CA	(IDCentral)	that	lets	you	request	and	download	client	certs	via	a	
secure	protocol	(Identity	Registration	Protocol,	or	IRP,	port	4604).	It	also	allows	you	to	
download	the	CA	Certs,	determine	revocation	status,	etc,	all	via	IRP.

• IRP-enabled	clients	can	let	you	do	this	via	a	GUI,	or	it	can	be	partially	or	fully	automated,	to	
hide	the	complexity	of	PKI	from	the	user.	The	client	can	also	publish	the	client	cert	in	LDAP,	or	
obtain	other	user’s	client	certs	from	LDAP.

WHAT	IS	THE	BLACKBIRD	SECURE	E-MAIL	CLIENT?

• Since	Snowden’s	revelations	we	know	that	all	US	software	has	weakened	crypto	algorithms	
and/or	backdoors.

• Sixscape has	created	a	new	secure	E-mail	client	called	Blackbird (as	in	SR-71)	with	trusted	
crypto,	IRP	integration	(with	our	IDCentral CA),	Personal	Address	Book,	LDAP/AD	integration	
(as	a	Group	Address	Book),	MS	Certificate	Database	manager,	Crypto	Token	Manager,	etc.

• It	can	create	S/MIME	secured	messages	(with	attachments)	and	send	them	via	SMTP,	via	
FTP/S	or	via	SFTP.	It	can	also	save	them	to	an	.eml file	(e.g.	in	DropBox,	OneBox).	The	recipient	
can	double	click	on	the	file	which	pops	the	S/MIME	message	into	their	secure	E-mail	client.

• It	is	dramatically	easier	to	configure	and	use	S/MIME	with	Blackbird	than	with	Outlook.
• We	have	extended	S/MIME	to	other	protocols	just	like	SSL/TLS	was	earlier.
• Next	we’re	going	to	create	an	XMPP+S/MIME	end2end	secure	chat	app.

Demo of blackbird
Secure E-mail Client

Lockheed	SR-71	Blackbird

HOW	DO	I	PROTECT	MY	PRIVATE	KEY?

• By	default,	when	I	create	a	keypair (when	requesting	a	client	cert),	the	private	key	is	created	
on	my	computer,	and	stored	in	my	MS	Certificate	Database.	It	can	be	protected	with	no,	weak	
or	strong	protection.	Strong	protection	requires	me	to	enter	a	passphrase	each	time	I	use	
that	private	key.	It	could	still	be	hacked.

• It’s	better	to	keep	your	private	key	in	a	FIPS-140-2	crypto	token.	You	can	import	key	material	
into	a	token,	or	you	can	actually	create	the	key	material	inside	the	token.	Once	the	private	
key	is	in	the	token,	there	is	no	way	to	get	it	out,	but	you	can	use it	via	PKCS	11.

• A	crypto	token	can	look	like	a	thumbdrive,	or	a	smartcard	(with	contacts	or	contactless).

• When	you	plug	in	a	crypto	token,	you	must	supply	a	passphrase	to	allow	access	to	the	private	
key(s)	in	it.	Once	supplied,	the	key	material	appears to	be	in	the	MS	cert	DB,	but	isn’t	really.

WHAT	IS	A	CRYPTOGRAPHIC	TOKEN?

• A	cryptographic	token	is	a	small	device	with	limited	memory	(maybe	64K	bytes),	a	small	CPU,	
firmware	that	can	do	asymmetric	key	(RSA),	symmetric	key	(AES),	message	digest	(SHA)	and	
PKCS11	protocol,	and	typically	a	USB	interface.	They	cost	about	US$15	in	single	quantity.

• The	private	key	can	be	loaded	into	a	token	(e.g.	from	PKCS	12	file)	or	created	inside	it.	Once	
inside	the	token,	the	private	key	can	never	leave	(it’s	a	Hotel	California	for	private	keys).

• You	transmit	things	to	encrypt	or	decrypt	into	the	token	(using	PKCS	11	via	USB),	do	the	
encryption	or	decryption	in	the	token,	then	retrieve	the	results	(using	PKCS	11	via	USB).

• If	a	private	key	is	ever	kept	on	your	computer’s	file	system,	or	is	used	in	your	computer’s	
memory	(with	virtual	memory	swapping	going	on),	there	are	attacks	to	get	the	private	key.

• With	a	cryptographic	token,	the	private	key	is	never	really	in your	computer.

Demo of crypto token

WHAT	PLATFORMS	CAN	I	USE	SCA ON?

• Anything	that	uses	SSL/TLS	can	in	theory	do	SCA	(need	client	certs)
• Username	comes	from	client	cert,	no	password	or	2FA	needed	(crypto	challenge	far	stronger)

• You	can	use	it	with	Web	Apps,	Window	Apps	or	Mobile	device	apps.
• It	can	be	used	for	authentication	to	SMTPS,	IMAPS,	LDAPS,	etc (server	must	support)

• SCA	is	the	future	of	authentication	for	all	applications.
• With	private	keys	kept	in	hardware	crypto	token,	this	is	military	grade	security.

• No	need	for	username/password	database	on	server
• Hacker	could	see	everything	I’m	typing,	sniff	all	network	traffic,	cannot	assume	my	identity!

• Without	my	private	key	(and	passphrase),	they	cannot	assume	my	identity.

IN	CASE	YOU	ARE	WONDERING	WHAT	INSPIRED	OUR	
NAME	AND	LOGO…

Netscape	Communications	made	enormous	contributions	to	the	IPv4	
Internet	with	the	first	viable	web	browser,	first	viable	web	server,	first	
LDAP	server,	SSL	and	many	other	innovations.

Sixscape Communications	is	making	the	same	kind	of	contributions	to	the	
IPv6	Internet,	with	IRP	(first	Certificate	Management	Protocol	with	
authentication),	authenticated	IP	address	registration,	extending	S/MIME	
to	protocols	other	than	SMTP,	and	End2End	Direct	connectivity.

Thank you For listening
"The	right	to	buy	information	weapons	is	the	right	to	be	free“

A.E.	van	Vogt,	The	Weaponshops of	Isher,	updated

Privacy	is	a	Fundamental	Human	Right

www.sixscape.com

Sixscape – Purveyors	of	Fine	Information	Weapons	since	2014

